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10 Analysing and Presenting Results

10.1 Introduction

The statistical aspects of a systematic review of diagnostic test accuracy are more challenging than
for reviews of interventions, and it is recommended that review teams include an individual with the
statistical expertise needed to understand and implement the hierarchical models required for
meta-analysis. This chapter has been written with this recommendation in mind. It first aims to
both provide guidance to the key researchers in the review team on the purpose, possibilities and
interpretation of methods of meta-analysis, and secondly provides the technical detail to assist a
statistical expert in applying the methods recommended for Cochrane Reviews. Sections 10.1 to
10.4 and 10.6 outline the conceptual approach to meta-analysis, how analysis is undertaken for a
single test accuracy study, and the graphical presentations and meta-analysis methods that are
recommended. Section 10.5 is the more technical guide to the meta-analytical models to assist an
informed statistician apply them in commercial statistical software programs, and is necessarily
written presuming a level of familiarity with statistical hierarchical modelling. It includes examples
with data sets, computer code and resulting output. Section 10.5 is therefore unlikely to be
understood by all readers.

10.1.1 Aims of meta-analysis for DTA reviews

Health professionals (mainly physicians) use diagnostic tests to ascertain whether an individual
(usually a patient) does or does not have a particular disease or condition. Cochrane diagnostic test
accuracy reviews provide information on how well tests distinguish patients with the disease from
those without. Most tests are imperfect, and errors will occur. Hence, the statistical methods focus
on two statistical measures of diagnostic accuracy, the sensitivity of the test (the proportion of those
with the disease who have an abnormal test result) and the specificity of the test (the proportion of
those without the disease who have a normal test result). A Cochrane DTA review aims to quantify
and compare these statistics for one or more diagnostic tests to describe how well each test
classifies individuals, and estimate and compare the likely error rates (false positive and false
negative diagnoses) that may be encountered. Publishing such reviews in the Cochrane Library aims
to assist decision makers in rationally choosing and using tests by providing good evidence about
their likely error rates.

Meta-analysis is a set of statistical techniques for combining results from two or more separate
studies. Meta-analysis of diagnostic test accuracy studies provides summaries of the results of
relevant included studies: providing an estimate of the average diagnostic accuracy of a test or tests,
the uncertainty of this average, and the variability of study findings around the estimates. Meta-
analytical regression models can statistically compare the accuracy of two or more different
diagnostic tests and describe how test accuracy varies with test thresholds and other study
characteristics.

Meta-analysis helps to make sense of apparently conflicting study results, as it identifies which
differences are likely to be real, which are explicable by chance, and which can be explained by
known differences in study characteristics. As the precision of estimates typically increases with the
guantity of data, meta-analysis may have more power to detect real differences in test accuracy
between tests than single studies, and may yield more precise estimates of expected sensitivity and
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specificity. Also, by quantifying the variability of test accuracy across many settings, meta-analysis
may provide insights into the consistency of test results. Meta-analysis models also provide a
framework for comparing the accuracy of tests which have not directly been compared in individual
studies.

10.1.2 When not to use a meta-analysis in a review
Meta-analysis is a powerful tool to use to summarise study findings, providing the estimates of test
accuracy in the individual studies are both relevant and unlikely to be biased.

A common criticism of meta-analyses of studies of interventions is that ‘they combine apples with
oranges’, implying that they may mix together estimates from studies which differ in important
ways. This is one of the reasons why Cochrane reviews emphasise the importance of carefully
defining inclusion criteria to identify studies which directly address the review question. In any
analysis it is important to ensure that there are no differences between the studies in terms of the
participants they recruit and the tests which they evaluate which would make the results of the
meta-analysis uninformative. This is particularly important in reviews of test accuracy, as changes
to patient selection criteria will alter the spectrum of disease and non-disease in the population,
which can strongly impact on test accuracy as discussed in Chapter 9.

In addition it is important that the studies that are being combined in an analysis are
methodologically rigorous. Meta-analysis of studies at risk of bias may be seriously misleading. If
bias is present in individual studies meta-analysis may compound the errors and produce an
erroneous result which may be inappropriately interpreted as having credibility. Meta-analysis
involving regression modelling (see 10.5.3) may be useful to investigate how poor methodological
quality can lead to bias in results.

10.1.3 How does meta-analysis of diagnostic test accuracy differ from meta-analysis of
interventions?

The format of Cochrane DTA reviews allows for greater flexibility for structuring and reporting meta-

analysis than is available in Cochrane Intervention reviews, and requires use of external statistical

software. These differences arise for five main reasons:

1) Diagnostic test accuracy reviews can have diverse aims and address different types of question
(as outlined in 10.1.4 below). Different comparisons and multiple aims may be addressed in a
single review, often using data from the same studies in several analyses. To provide the
flexibility needed RevMan requires separate steps of organising data entry and specifying
analyses, unlike in Cochrane reviews of interventions where the two stages are combined. Thus
there is a need to develop both an appropriate data structure and a clear analysis plan.

2) Evaluating test accuracy requires knowledge of two quantities, the test sensitivity and specificity.
Meta-analysis methods for diagnostic test accuracy thus have to deal with two summary
statistics simultaneously rather than one (as is the case for reviews of interventions).

3) A meta-analysis of diagnostic test accuracy has to allow for the trade-off between sensitivity and
specificity that occurs between studies that vary in the threshold value used to define test
positives and test negatives (see 10.2.4). Meta-analysis methods have been devised to enable
studies to be combined that have used a test(s) at different thresholds, a common occurrence in
many diagnostic test systematic reviews.
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4) Heterogeneity is to be expected in results of test accuracy studies, thus random effects models
are required to describe the variability in test accuracy across studies (see 10.4.3).

5) Methods for undertaking analyses which account for both sensitivity and specificity, the
relationship between them, and the heterogeneity in test accuracy, require fitting hierarchical
random effects models, which is beyond the analytical abilities of RevMan. Although
exploratory analyses can be undertaken in RevMan, the definitive analyses needs to be
undertaken in commercial software packages and sophisticated statistical programming
environments such as SAS, Stata, S-Plus, R, MLwiN or winBUGS/OpenBUGS, for which
collaboration with a statistical expert is highly recommended .

10.1.4 Questions which can be addressed in DTA analyses

There are three main types of question that can be addressed in a Cochrane DTA analysis concerning
the accuracy of a test. The question types are mirrored as different options in the DTA module in
RevMan when creating analysis definitions.

10.1.4.1 What is the accuracy of a test?

Such an analysis is restricted to characterising the accuracy of a single test, and aims either to
estimate an average summary value of sensitivity and specificity or to describe how sensitivity and
specificity vary with changing threshold by estimating a summary ROC curve. Which approach is
used will depend on the nature of the test, and the variability in thresholds across the studies, which
is discussed in more detail in 10.4.1.

10.1.4.2 How does the accuracy vary with clinical and methodological characteristics?
Planned investigations of heterogeneity investigate whether the observed test accuracy varies
between studies according to characteristics associated with the tests, settings, participants or
methodology of the studies. For purposes of graphical presentation it is best for the characteristic
variable to group studies in categories. However, meta-regression models allow investigation of the
relationship of accuracy to both categorical and continuous covariates, such as disease prevalence or
test threshold. Both differences in key parameters of summary ROC curves and in summary
sensitivity-specificity points can be investigated.

10.1.4.3 How does the accuracy of two or more tests compare?

Comparison of the accuracy of tests is an important part of a Cochrane DTA review, as it identifies
which test (or tests) yields superior test accuracy. It is possible to compare multiple tests in a single
analysis —there is no general restriction to comparing only pairs of tests, although it is often helpful
to structure comparisons of multiple tests as a series of pairwise comparisons (bearing in mind
problems caused by making excessive numbers of multiple comparisons). Methodologically,
comparing two tests can be considered as a form of subgroup analysis, with studies evaluating each
test each in a separate subgroup, so the same statistical modelling techniques are used as for
investigating sources of heterogeneity. However, there is an important consideration to be made
about the studies to be included in each pairwise comparison of two tests; whether all studies
should be included, or whether the comparison should be restricted to only those which make direct
comparisons themselves, either by testing all patients using all tests or by randomizing patients to
different tests.
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10.1.5 Planning the analysis

Undertaking meta-analyses for a Cochrane DTA reviews involves first developing an analysis plan
and creating a series of analysis definitions in RevMan. Some of these decisions can be made at
protocol stage (see 10.1.6), others only after the data has been extracted from the papers. The
planning stages can be organised as follows:

e C(Clearly specifying the main questions which need answering, concerning which tests require
estimates of test accuracy, and which tests should be compared with each other.

e Detailed planning of the way in which comparisons will be made, identifying the different tests
or groups of tests which can be compared, the multiple and pairwise comparisons that will be
made, and the studies and data that will be included in each analysis. A decision to consider
here is whether comparative analyses should include all studies, or be restricted to those studies
that evaluate both tests. Covariates for any heterogeneity analyses similarly need to be
specified and coded.

e From these a list of the planned main analyses, test comparisons and heterogeneity analyses will
be produced. The quantity of data that are available for each analysis should be determined to
guide the choice of analysis method, and to assess whether adequate data are available for
planned heterogeneity analyses. An analysis definition can be created in RevMan for each, and
outlines of major results tables created.

e Plotting the results on forest plots and ROC plots using the functions in RevMan will familiarise
the review author with the location and variability of the study results.

e Astrategy needs to be specified to deal with the mixed reporting of thresholds that may occur
across studies. A key issue is deciding whether an analysis should be restricted to studies that
share a common threshold value (which allows estimation of the summary sensitivity and
specificity of a test at that threshold) or to include all studies regardless of threshold value
(which allows estimation of summary ROC curves but compromises the interpretation of
sensitivity and specificity points). This will be informed by information about the thresholds at
which the tests were evaluated in the primary studies, and knowledge of how the tests are
applied in clinical practice.

e Once this analysis plan has been determined data must be exported from RevMan to the chosen
statistics package, and appropriate models fitted. Results must be collated and tabulated as
required, and parameter estimates for average sensitivity and specificity points and summary
ROC curves copied back into the RevMan graphics to produce final graphical output.

10.1.6 Writing the analysis section of the protocol

As the analysis will to some extent depend on the type and quantity of data that are located through
the literature search, it is often not possible to fully specify the analysis at the protocol stage.
However, certain aspects must be predefined, and analysis strategies included where full details
cannot be provided. Developing a protocol prior to reviewing the studies adds scientific credibility
to the review, aiming to reduce the possibility that decisions made during the analysis are not data
driven, in that analytical options are not selected in order to manipulate the findings. It also ensures
that there is a clear plan for the collection and processing of data, which will inform the data
extraction process and ensure that the analyses done will address the aims of the review.

A level of familiarity with key statistical summary measures should be presumed when writing a
protocol. For example, it is not necessary to define summary measures such as sensitivity and
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specificity, likelihood ratios, etc. Similarly, it is not necessary to include explanations of the meta-
analytical methods used if they are those described in the Handbook. This chapter of the Handbook
should be cited if any definitions and explanations are thought necessary. Where non-standard
methods are required, these should be described and their use justified.

Key issues which need to be stated are:

e Definitions of key criteria, such as disease (specifying any binary classifications required) and
categorisations of positive and negative test results. Where there are several possible options a
strategy needs to be provided as to how a definition will be made, and plans for sensitivity
analyses (10.6.1) included in order to investigate the robustness of the decisions made. Rules
for handling known categories of indeterminate test results should be pre-stated where
possible.

e Astrategy needs to be included for handling multiple thresholds for test positivity, pre-
specifying, if possible, any common thresholds at which summary estimates of sensitivity and
specificity will be obtained (see 10.4.1).

e Approaches to modelling need to be outlined. In some cases, it may not be possible to specify in
advance whether the modelling will focus on summary points and/or curves as this will be
determined by how studies report their results. In this situation, reviewers should make it clear
how they will make this decision once the data are available (see 10.4.1). The software that will
be used for analysis should be stated (see 10.5.5).

e |t needs to be stated clearly whether all studies will be included in test comparisons, whether
comparisons will be based on paired data only, or whether both will be presented. If both, it
needs to be clear which will be the primary analysis. Again, numbers of studies may affect the
original intent (see 10.5.4Error! Reference source not found.Error! Reference source not
found.).

e Planned investigations of heterogeneity should be outlined, stating covariate codings if known,
and the approaches used for building models (see 10.5.3).

e Plans, if any, for investigating reporting biases should be outlined (see 10.6.3).

Any deviations from the protocol should be documented in the ‘Differences between protocol and
review’ section at the end of the review.

10.2 Key concepts

10.2.1 Disease status

For the purposes of this Handbook, the accuracy of a diagnostic or screening test will be assessed by
measures of the test’s ability to detect the presence of disease. The true disease status of each
individual will be considered as binary (dichotomous), diseased and not diseased. Although this
represents a simplification of the reality of diagnosis, the vast majority of available methodology for
the assessment of diagnostic and screening tests is predicated on the assumption of a dichotomous
true disease status. Where there are alternatives for dichotomisation of disease status, binary
categorisations which relate to decision-making options used in clinical practice should be chosen to
ensure that the review will inform clinical decision-making. Where no consensus exists,
consideration of alternative categorisations may be investigated in sensitivity analyses (10.6.1).
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Statistical methodology is currently being developed for modelling test accuracy for multiple disease
categories, but this is currently at a developmental stage and not ready for inclusion in Cochrane
reviews of diagnostic test accuracy (see 10.6.4).

10.2.2 Types of test data
Systematic reviews of diagnostic and screening test accuracy involve test results of one or more of
the following three data types:

e Binary (dichotomous), in which the test result is reported as a yes or no, positive or negative.

e Ordinal, in which the test result is reported on a set of ordered categories, often with verbal
descriptors, such as 1=definitely normal, 2=presumably normal, 3=equivocal, 4=presumably
abnormal, 5= definitely abnormal.

e Continuous or Count, in which the test result is reported on a continuous scale or as a count,
such as the concentration of a substance or the number of features observed.

Many ordinal and binary categorizations arise, or can be conceptualized as arising from underlying
continuous measurements by application of one or more thresholds. For example, laboratory tests
that report results as positive or negative typically involve a numerical measurement which is
categorized according to a pre-stated threshold, whereas imaging tests may report an ordinal grade
for the certainty of the presence of a feature or the stage of disease progression.

To be included in a meta-analysis, ordinal, count or continuous test results need be re-categorized as
binary by selecting a threshold and presenting the data as a 2x2 table. The issue of choice of such
positivity thresholds and examination of accuracy at several thresholds is discussed in 10.2.4 and
10.4.1.

10.2.3 Analysis of a primary test accuracy study
This section defines summary statistics for test accuracy commonly used in reports of primary
studies.

Having chosen a particular threshold for test positivity, the data from a primary study can be
presented in a 2x2 table showing the cross classification of disease status (result of the reference
standard) and test outcome (result of the index test) as in Table 10.1. For simplicity, throughout this
chapter we refer to those with and without the target condition as defined by the reference
standard as diseased and non-diseased, accepting that those without the target condition may well
have other diseases.

Table 10.1 2x2 cross classification of test results and disease status

Test outcome (index test) Disease status (reference standard result)

Diseased (D+) Non-diseased (D-) Total
Index test positive (T+) True positives (a) False positives (b) Test positives (a+b)
Index test negative (T-) False negatives (c) True negatives (d) Test negatives (c+d)
Total Disease positives (a+c)  Disease negatives (b+d) N (a+b+c+d)

Study specific as well as summary measures of test accuracy are then computed either as
proportions of those disease positive or negative (in statistical terms, these are statistics that are
conditional on the disease status) or test positive or negative (these are statistics that are conditional
on the index test result) as described below.
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10.2.3.1 Sensitivity and Specificity
Sensitivity and specificity are measures defined conditional on the disease status as they are
computed as proportions of the number diseased and the number non-diseased respectively.

The sensitivity of a test is defined as the probability that the index test result will be positive in a
diseased case. Formally, sensitivity=P(T+|D+) and is estimated using the numbers from the table as
a/(a+c). Sensitivity is sometimes referred to as Detection Rate (DR), True Positive Rate (TPR) or True
Positive Fraction (TPF). It is expressed either as a proportion or a percentage.

The specificity of a test is defined as the probability that the index test result will be negative in a
non-diseased case. Formally, specificity=P(T-| D-) and is estimated using the numbers from the table
as d/(b+d). Specificity is occasionally referred to as the True Negative Rate (TNR) or True Negative
Fraction (TNF). More often, the terms False Positive Rate (FPR) and False Positive Fraction (FPF) are
used for the complement of specificity (computed as 1-specificity or b/(b+d)). Again, both
proportions and percentages are used.

Although the terms true positive fraction and false positive fraction are both technically more
correct because sensitivity and specificity are fractions and not rates, true positive rate and false
positive rate are the terms in most common usage and will be used in this Handbook.

The values of sensitivity and specificity are occasionally combined in a measure known as Youden’s
Index computed as sensitivity+specificity—1. Youden’s Index has no direct probabilistic
interpretation but provides a general index of test accuracy which gives equal weight to test errors
(false negatives and false positives). Values close to 1 indicate high accuracy; a value of zero is
equivalent to uninformed guessing and indicates that a test has no diagnostic value.

10.2.3.2 Predictive values
Predictive values are measures defined conditional on the index test results as they are computed as
proportions of the total with positive and negative index test results.

The positive predictive value of a test is defined as the probability that a case with a positive index
test result is diseased. Formally, positive predictive value=P(D+|T+) and is estimated using the
numbers from the table as a/(a+b). Again, positive predictive values are reported either as
proportions or percentages.

The negative predictive value of a test is defined as the probability that a case with a negative index
test result is non-diseased. Formally, negative predictive value=P(D-/T-) and is estimated using the
numbers from the table as d/(c+d). Again, negative predictive values are reported either as
proportions or percentages.

10.2.3.3 Likelihood ratios

Likelihood ratios can be used to update the pre-test probability of disease using Bayes’ theorem,
once the test result is known. The updated probability is referred to as the post-test probability. For
a test that is informative, the post-test probability should be higher than the pre-test probability if
the test result is positive, whereas the post-test probability should be lower than the pre-test
probability if the test result is negative. Considerations about the use of likelihood ratios in
systematic reviews of test accuracy are explained in the Chapter 11.
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The positive likelihood ratio describes how many times more likely positive index test results were in
the diseased group compared to the non-diseased group. The positive likelihood ratio, which should
be greater than 1 if the test informative, is defined as:

LR+ = P(T+|D+)/P(T+|D-) = sens/(1-spec), and is estimated as (a/(a+c)) / (b/(b+d)).

The negative likelihood ratio describes how many times less likely negative index test results were in
the diseased group compared to the non-diseased group. The negative likelihood ratio, which should
be less than 1 if the test is informative, is defined as:

LR- = P(T-|D+)/P(T-|D-) = (1-sens)/spec, and is estimated as (¢/(a+c)) / (d/(b+d)).

10.2.3.4 Diagnostic odds ratios

The diagnostic odds ratio (DOR) summarizes the diagnostic accuracy of the index test as a single
number that describes how many times higher the odds are of obtaining a test positive result in a
diseased rather than a non-diseased person. The fact that it summarises test accuracy in a single
number makes it easy to use this measure for meta-analysis as described in 10.5.1, but expressing
accuracy in terms of ratios of odds means the measure has little direct clinical relevance, and it is
rarely used as a summary statistic in primary studies. In fact, the clinician is usually interested in the
sum of the number of false negative and false positive results whereas the DOR reflects their
product. The DOR does, however, remain an important element in meta-analytic model building (see
10.5). It is formally defined as:

DOR= LR+/LR- = (sens x spec)/(1-sens)x(1-spec), and is estimated as (ad)/(bc).

10.2.4 Positivity thresholds

Binary test outcomes are defined on the basis of a threshold for test positivity and change if the
threshold is altered. This dependence on threshold is a fundamental aspect of diagnostic test
evaluation. In the case of test sensitivity and specificity, the dependence induces a trade-off
between the two quantities, one value increasing whilst the other decreases as the threshold for
positivity is moved. This is illustrated in the panels in Figure 10.1, which each show the same
hypothetical distributions of test results for diseased and non-diseased individuals on a continuous
scale. The panels vary in the numerical value of the disease threshold used to define test positive. At
each threshold, the sensitivity of the test is measured by the proportion of the area under the
‘diseased’ curve to the right of the threshold. Similarly, the specificity is measured by the proportion
of the area under the ‘non-diseased’ curve to the left of the threshold. As the threshold decreases
from panel (a) to panel (e), the proportion of those with disease who are above the threshold and
hence have a positive test increases from 69% to 99%. These figures give the sensitivity of the test.
At the same time the proportion of those without disease who are below the threshold and hence
have a negative test result decreases from 99% to 69%. These figures give the specificity of the test.

Throughout this chapter relationships of test performance are described presuming that higher test
results are consistent with disease being present and lower tests results are consistent with disease
being absent. If lower measures of the test quantity indicate disease, the relationships would be
reversed.
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Figure 10.1 Relationship between sensitivity, specificity and the positivity threshold
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10.2.5 ROC curves

Primary studies that evaluate a test at several thresholds sometimes present results as ROC curves.
The ROC curve of a test is the graph of the values of sensitivity and specificity that are obtained by
varying the positivity threshold across all possible values. The graph plots sensitivity (true positive
rate) against 1-specificity (false-positive rate). The curve for any test moves from the point where
sensitivity and 1—specificity are both 1 (the upper right corner) which is achieved for a threshold at
the lower end of its range (classifying all participants as test positive, so there are no false negatives
but many false positives) to a point where sensitivity and 1-specificity are both zero (the lower left
corner) which is achieved when the threshold moves to the upper end of its range (and all
participants are classified as test negative, giving no false positives but many false negatives). The
shape of the curve between these two fixed points depends on the discriminatory ability of the test.

Figure 10.1 shows idealised distributions of test results for populations of diseased and non-diseased
individuals, with shaded areas showing how the false negative rate (red) and the false positive rate
(green) change as the positivity threshold varies. Figure 10.2(a) shows the resulting ROC curve. In
practice, the ROC curve is estimated from a finite sample of test results and hence will not
necessarily be a smooth curve as shown below. Note that the horizontal axis for each ROC plot in
Figure 10.2 is labelled in terms of specificity decreasing from 1.0 to 0.0. This style of labelling is used
in RevMan, and is equivalent to the usual labelling (1-specificity ranging from 0.0 to 1.0).

The position of the ROC curve depends on the degree of overlap of the distributions of the test
measurement in diseased and non-diseased. Where a test clearly discriminates between diseased
and non-diseased such that there is no or little overlap of distributions, the ROC curve will indicate
that high sensitivity is achieved with a high specificity, that is the curve approaches the upper left
hand corner of the graph where sensitivity is 1 and specificity is 1 (Figure 10.2(a)). If the
distributions of test results in diseased and non-diseased coincide, the test would be completely
uninformative and its ROC curve would be the upward diagonal of the square (Figure 10.2(c)).

The ROC curves shown in Figure 10.2(a)-(c) are all symmetrical about the sensitivity=specificity line
(the downward diagonal of the square). It is also possible to get ROC curves which are not
symmetrical as in Figure 10.2(d). Asymmetrical curves typically occur when the distribution of the
test measurement in those with disease has more or less variability than the distribution in non-
diseased people. Increased variability might occur, for example, where disease may cause a
biomarker both to rise and become more erratic; reduced variability might occur where disease may
lower biomarker values to a bounding level such as a lower level of detection.

The comparison of tests on the basis of their ROC curves takes into consideration their accuracy
across a range of thresholds, and is aided by single summary statistics. Several such measures have
been proposed in the literature. Most commonly used among them is the area under the curve
(AUC), which equals 1 for a perfect test and 0.5 for a completely uninformative test. The AUC is
equal to the probability that if a pair of diseased and non-diseased individuals is selected at random,
the diseased individual will be have a higher test result than the non-diseased individual. The AUC
can also be interpreted as an average sensitivity for the test, taken over all specificity values (or
equally as the average specificity over all sensitivity values). Other summaries include partial areas
under the curve, values of sensitivity corresponding to selected values of specificity (and vice versa),
and optimal operating points, defined according to specified criteria.
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Figure 10.2 Examples of ROC curves
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10.2.6 Relationships between ROC curves, diagnostic odds ratios and Q*

There is a useful link between ROC curves and diagnostic odds ratios which is important to
appreciate to understand the way in which meta-analytical models are constructed. For the
symmetric ROC curves displayed in Figure 10.3, all points on each curve have a common diagnostic
odds ratio. This property arises when the test results in the diseased and non-diseased groups have a
particular mathematical distribution known as a logistic distribution with equal variance in both
groups. For example, a ROC curve with a diagnostic odds ratio of 21 would go through the
(sensitivity, specificity) points of (0.70, 0.90), (0.82, 0.82) and (0.90, 0.70). Thus one way of
summarising a symmetric ROC curve is by the value of the diagnostic odds ratio. Where ROC curves
are asymmetric, the diagnostic odds ratio is not constant across the whole length of the curve but
increases (or decreases) systematically with increasing threshold, and the curve can be
mathematically described by noting how the diagnostic odds ratio changes with threshold, or a
guantity related to threshold.
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These relationships are not used in primary studies of tests, but form the basis of the ROC based
meta-analytical models of test accuracy described in 10.4Error! Reference source not found.Error!
Reference source not found. and 10.5 below.

ROC curves are sometimes described by quoting a point known as Q* where the ROC curve
intersects the downward diagonal shown in Figure 10.3. By definition, at this point the sensitivity
and specificity values are equal. The use of Q* values is discouraged in Cochrane reviews as they
often give the wrong impression of the accuracy, particularly if SROC curves are asymmetric, or the
study points lie away from the downward diagonal of the sensitivity=specificity line.

Figure 10. 3 Relationship between DOR and ROC curves
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10.3 Graphical and tabular presentation

A Cochrane review of diagnostic test accuracy uses two main forms or graphical display, summary
ROC plots and forest plots. Review authors create these figures within RevMan for each analysis
that is specified.

10.3.1 Summary ROC plots

Summary ROC plots display the results of individual studies in ROC space, each study is plotted as a
single sensitivity-specificity point. The size of points can be controlled to depict the precision of the
estimate (typically scaled according to the inverse of the standard error of the logit(sensitivity) and
logit(specificity)) or according to their sample sizes. In RevMan it is possible to mark studies as
rectangles, with their height relating to the number of diseased (and hence precision of sensitivity
estimate) and width relating to the number of non-diseased (and hence the precision of the
specificity estimate).

Summary ROC plots depict the scatter of the study results. Occasionally ‘cross-hairs’ are added to
each study point to indicate confidence limits for sensitivity and specificity, but this can make the
plot very cluttered should there be many studies. This is not implemented in RevMan. Even if they
depict the precision of the estimates from individual studies, it is difficult to gauge visually a sense of
random variability versus heterogeneity.
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Two types of meta-analytical summary can be added to the graph: summary ROC (SROC) curves and
summary sensitivity and specificity points. Confidence regions for the summary sensitivity and
specificity points can be included, as can prediction regions which give an indication of between
study heterogeneity (see also 10.5.2.1).

Studies can also be plotted using different symbols or colours to indicate attribution to different
subgroups for investigations of heterogeneity or for test comparisons.

10.3.2 Linked ROC plots

Linked ROC plots are used in analyses of pairs of tests, where both tests have been evaluated in each
study. The points are plotted as in a normal summary ROC plot, but the two estimates (one for each
test) from each study are joined by a line. It is thus possible to get a sense of the change in accuracy
within study between the tests, and to note the degree of consistency in this change. Summary
estimates of sensitivity and specificity for each tests, as well as summary ROC curves obtained from
meta-analysis can be added to these plots (see 10.5.4.5 for an example plot).

10.3.3 Coupled forest plots

Forest plots for diagnostic test accuracy report the number of true positives and false negatives in
diseased and true negatives and false positives in non-diseased participants in each study, and the
estimated sensitivity and specificity, together with confidence intervals. The plots are known as
coupled forest plots as they contain two graphical sections: one depicting sensitivity, and one
specificity. The order of the studies can be sorted, often they are presented sorted by values of
sensitivity, or grouped by test type or covariate values. Whilst it is possible to observe heterogeneity
in sensitivity and specificity individually on such plots, it is not as easy to visualise whether there are
threshold-like relationships. Summary statistics computed from meta-analyses are rarely added to
coupled forest plots. In Cochrane DTA reviews an archive of coupled forest plots for all the tests for
which data are entered into RevMan is published with the review to make the 2x2 tables widely
accessible.

10.3.4 Example 1: Anti-CCP for the diagnosis of rheumatoid arthritis - Descriptive Plots.

These data are taken from a review (Nishimura 2007) of anti-cyclic citrullinated peptide antibody
(anti-CCP). The reference standard was based on the 1987 revised American College of
Rheumatology (ACR) criteria or clinical diagnosis. Thirty seven studies were included in the meta-
analysis and their sensitivities and specificities are shown on the forest plot, and the study specific
estimates are also shown in a scatterplot in ROC space below.

The forest plot below shows the studies in alphabetical order. The figure gives the numbers for the
2x2 table (TP, FP, FN, TN) for each study which will form the basis for statistical analyses. Study
specific estimates of sensitivity and specificity are shown, with their 95% confidence intervals. These
estimates (and confidence intervals) are also shown graphically. The most striking feature of this
figure is the greater uncertainty (indicated by the confidence interval width) and variability
(indicated by the scatter of point estimates) in sensitivity than specificity. The studies can be ordered
in different ways (e.g. in increasing order of sensitivity) to provide a visual representation of any
association between sensitivity and specificity. The figure also includes information on a covariate,
the CCP generation, which may be associated with heterogeneity in test accuracy. (This will be
explored in 10.5.3.1).
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Study TP FP FN TH Generation Sensitivity Specificity Sensitivity Specificity
Aotsuka 2005 115 17 18 T3 CCP2Z 0.88[0.81,093 0.81[0.71,0.89] g —
Bas 2003 110 24 86 M5 CCP1 0.56[0.4%9 0.653] 0.90[0.85, 0.93] - =
Bizzaro 2001 40 & 58 227 CCP1 041 [0.31,0.81] 0.98[0.95, 0.99] —— L}
Bombardieri 2004 230 7 k] CCP2 077 [0.48 0900 1.00[0.91,1.00] —a— -
Chaoi 2005 236 20 88 N CCP2 0.73[0.68 078 0.92[0.88 0.95] & =
Correa 2004 T4 1 8 130 CCP2 0.90[0.82 096 0.92[0.86, 0.96] = -
De Rycke 2004 g9 4 29 142 CCPZ 0.75([0.67,0.83] 0.97 [0.93, 0.99] - -
Dubucquoi 2004 90 2 &50 128 CCP2 064 [0.86 072 0.98[0.95 1.00] — a
Fernandez-Suarez 2005 M0 22 Th CCP2 058044, 072 1.00[0.95 1.00] —a— -
Garcia-Berrocal 2005 B3 8 18 38 CCP2 079069 0.87] 0.83[065 093] — —
Girelli 2004 25 2 10 40 CCP2 0.71[0.44, 0,85 0.95[0.84, 0.99] —a— —=
Goldbach-Mansky 2000 43 1 B3 120 CCP1 041 [0.31,0.81] 0.99[0.95, 1.00] —a— a
Greiner 2005 Tooo&8 17 228 CCP2 0.80[0.71,0.88 0.98[0.95 0.99] — L}
Grootenboer-Mignot 2004 167 8 98 a8 CCP2 0B3[0.47, 065 0.92[0.84, 0.96] - =
Hitchon 2004 26 8 15 15 CCP2 0B3[0.47 078 0.65[0.43 0.84] —— —
Jansen 2003 110 3 148 118 CCP1 043037, 0.459] 0.98[0.93, 0,99 - -
Kamali 2005 26 1 20 a6 CCP2Z 057 [0.41,071] 0.98[0.91,1.00] —— —a
Kumagai 2004 64 14 15 293 CCP2Z 0.81[0.71,085 095092 0.97] —& =
Kwak 2005 712 &8 GE CCP2 0.55[0.46, 0.64] 0.97 [0.90,1.00] — -
Lee 2003 B3 14 35 132 CCP2 066 [0.46 0,75 0.90[0.84, 0.95] i -
Lopez-Hoyos 2004 |3 0 T3 CCP2Z 1.00[0.91,1.00] 0.96[0.89, 0.99] —a =
Mell 2005 42 2 B0 96 CCP2Z 041032, 051 0.98[0.93 1.00] —— -
Mielen 2005 145 7 109 114 CCP2 058041, 0.64] 0.94[0.88, 0.98] - =
Quinn 2006 147 10 35 106 CCP2Z 0.81[0.74, 086 0.91[0.85, 0.96] g d
Rantapaa-Dahlgvist 2003 47 7 20 375 CCoPZo 0700058, 0.81] 0.928 [0.95, 0.99] —a— ]
Raza 2005 24 3 18 Ta CCP2 057 [0.41,072] 0.96[0.90, 0.99] —— =
Saraux 2003 40 11 46 146 CCP1 047 [0.36, 0,58 0.93[0.88, 0.96] —a— =
Sauerland 2005 171 26 B0 443 CCP2 074 [0.68 0800 0.94[0.92 0.96] - L}
Schellekens 2000 T2 14 7T 298 CCP1 0.48[0.40, 057 0.96[0.93, 0.98] —& L}
Soderlin 2004 T2 9 a1 CCP2 0.44[0.20,0.70] 0.96[0.87,1.00] — —=
Suzuki 2003 481 23 B8 185 CCP2 0.88[0.85 0.90) 0.89[0.84, 0.93] = -
Wallbracht 2004 190 12 108 408 CCP2 064 [0.49 0700 0.97[0.95, 0.99] = L}
wan Gaalen 2005 82 13 71 3m CCP2 054 [0.45 062 0.96[0.93, 0.98] —& =
wan Yenrooij 2004 65 79 252 2218 CCP2 077 [0.75 0800 0.97[0.96, 0.97] = L}
Wincent 2002 138 7 101 464 CCP1 058041, 0.64] 0.99[0.97, 0.99] - L}
Vittecog 2004 B3 & 107 133 CCP2 039032 047 0.96[0.92 0.99] - a
Zeng 2003 90 7 101 313 CCP1 047 [0.40,0.54] 0.98[0.96, 0.99] —t I_._ I I | —t I ; I !.
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10.3.5 Tables of results

Review authors need to construct additional tables to report results from their meta-analytical
models. Unlike for Cochrane intervention reviews, this output is not automatically included in the
review document. Authors might consider creating tables for the following purposes:

e To report the numbers of studies and individuals available for each of the key analyses.

e To report the estimates of diagnostic accuracy for each of the tests

e To report statistics of comparative accuracy and tests of statistical significance for the
pairwise comparisons between tests (a half-matrix display of all possible pairwise
comparisons may be useful). Separate tables for direct and uncontrolled comparisons may
be needed (see 10.5.4)

e Results of investigations of heterogeneity, including estimates of test accuracy in subgroups,
summary statistics of comparative accuracy and tests of statistical significance (see 10.5.3)

e Results of sensitivity analyses (see 10.6.1)

This list is not exhaustive, and authors should use their inspiration to identify the best ways of
communicating the results of their analyses.

Cochrane DTA reviews also include Summary of Results tables which are described in Chapter 11.

10.4 Meta-analytical summaries

Meta-analysis aims to compute and compare estimates of the expected diagnostic accuracy of a test
and investigate the variability of results between studies. A choice needs to be made of which
summary statistics are to be computed. In Cochrane reviews the choice is between estimating
expected values of sensitivity and specificity for the test at a common threshold (referred to as the
average operating point), or to estimate the expected ROC curve for a test across many thresholds
(referred to as the summary ROC curve or SROC curve). Other summary statistics (such as likelihood
ratios at the summary point and area(s) under the curve) can be computed from these summaries
should they be required to assist interpretation and application of the results (see Chapter 11).

10.4.1 Should I estimate a SROC curve or a summary point?

In a systematic review it is likely that the collected data will be at a mixture of different positivity
thresholds. Whilst for some tests there is consensus of what value the positivity threshold should
take, more often tests are evaluated at different thresholds in different studies. Presentation of
results at multiple thresholds within a single study is also encountered, with some studies presenting
estimates of ROC curves (see 0) which depict the accuracy of the test at all possible thresholds. In
addition, selective reporting of thresholds identified to optimise test accuracy can introduce bias if
they are selected in a data driven manner (Leeflang 2008).

A key principle underlying the choice of statistical summary in meta-analysis of test accuracy is that
the sensitivity and specificity of a test will vary as the positivity thresholds varies, as graphically
depicted using a ROC curve (see 0). It is important to note that the hierarchical models
recommended for meta-analysis for Cochrane DTA reviews account for correlation between
sensitivity and specificity observed across studies which is due to the functional relationship
between sensitivity and specificity as the threshold varies within each study. This occurs regardless
of whether a summary ROC curve or a summary point is the output of choice.
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A review author needs to decide whether they will use all the studies available to estimate the curve
(in which case the meta-analysis will estimate the summary ROC curve) or to estimate a summary
sensitivity and specificity point on this curve at a chosen threshold. Estimating summary sensitivity
and specificity by pooling studies which mix thresholds will produce an estimate that relates to some
notional unspecified average of the thresholds that occur in the included studies, which is clinically
unhelpful and must be avoided.

Variation in threshold is highly likely where there is no explicit numerical cutpoint and definitions of
a test positive are based on judgement rather than measurement. But even when it is possible to
define a common cutpoint on the basis of a numerical value or a point on a rating scale, it must be
acknowledged that there will still remain some variability in the actual threshold between studies
through calibration differences between equipment, differences between raters or observers, as
well as variation in the implementation of tests. The consequence of such variability will be
additional heterogeneity in test results observed at the common cutpoint. The summary sensitivity
and specificity point will reflect the average observed accuracy, whilst the prediction region will
reflect the heterogeneity in how it is applied (see example 10.5.2.2).

Thus the two main strategies to handle mixed and variable thresholds in an analysis are:

e Estimating summary sensitivity and specificity of the test for a common threshold, or at each
of several different common thresholds. Each study can contribute to one or more analyses
depending on what thresholds it reports. Studies which do not report at any of the selected
thresholds are excluded.

e Estimating the underlying ROC curve which describes how sensitivity and specificity trade-off
with each other as thresholds vary. In this case one threshold per study is selected to be
included in the analysis.

The choice of analytical approach will be influenced by the variation of thresholds in the available
studies. For example, if there is little consistency in the thresholds used, meta-analyses which
restrict to common thresholds will contain very little data, and estimating a summary ROC may be
preferred. If there is little variation in threshold between studies attempting to fit a summary ROC
curve will be difficult as the points are likely to be too tightly clustered in ROC space.

It is reasonable to estimate both SROC curves and average operating points in a review, as they may
complement each other in providing clinically useful summaries, and powerful ways of detecting
effects. For example, separate analyses of test data at different thresholds may be used to provide
clinically informative estimates of sensitivity and specificity, whereas including all studies to estimate
how summary ROC curves depend on covariates or test type will be the most powerful way to test
hypotheses and investigate heterogeneity.

10.4.2 Meta-analytical methods not routinely used in Cochrane Reviews

Methods that are not routinely included in Cochrane reviews are commonly encountered in the
literature for diagnostic meta-analysis. Separate pooling of sensitivity and specificity estimates fails
to account for the trade-off between sensitivity and specificity, which may lead to underestimates of
test accuracy (Deeks 2001). Similarly separate pooling of likelihood ratios ignores correlations

19|Page



between positive and negative likelihood ratios, and theoretically can produce estimates which are
impossible (Zwinderman 2008).

Pooling of predictive values is possible using the Bivariate method, but is not recommended as it is
known that predictive values depend on prevalence which is likely to vary between studies. The
consequences of this are two-fold: firstly that between study variation in prevalence may induce
greater heterogeneity than is observed for sensitivity and specificity, and secondly that the average
predictive values will relate to use of the test at some average, but unknown, prevalence.

10.4.3 Heterogeneity

Heterogeneity is to be expected in meta-analyses of diagnostic test accuracy. A consequence of this
is that meta-analyses of test accuracy studies tend to focus on computing average rather than
common effects. In systematic reviews of interventions it is sometime noted that the estimates of
the effect of the intervention in the different studies are very similar, the differences between them
being small enough to be explicable by chance. In such situations it is appropriate to use a fixed
effect approach meta-analysis that estimates the underlying common effect (and is interpreted as
the actual effect of the intervention). In test accuracy reviews large differences are commonly
noted between studies, too big to be explained by chance, indicating that actual test accuracy varies
between the included studies, or that there is heterogeneity in test accuracy. Random effects meta-
analysis methods are recommended when data are heterogeneous, which focus on providing an
estimate of the average accuracy of the test, and describing the variability in this effect. In Cochrane
DTA reviews, heterogeneity is presumed to exist and random effects models are fitted by default,
only simplified to fixed effect models where there are too few studies to estimate between study
variability, or analysis demonstrates that fixed effects are appropriate.

Univariate tests for heterogeneity in sensitivity and specificity and the estimates of the I statistic
(Higgins 2003) are not routinely used in Cochrane DTA reviews as they do not account for
heterogeneity explained by phenomena such as positivity threshold effects. If in a meta-analysis
there is variation in threshold, what is of importance is the degree to which the observed study
results lie close to the summary ROC curve, not how scattered they are in ROC space. The
magnitude of observed heterogeneity is best depicted graphically where such relationships can be
observed by the scatter of points and from the prediction ellipse. The numerical estimates of the
random effect terms in the hierarchical models do quantify the amount of heterogeneity observed,
but are not easily interpreted as they represent variation in parameters expressed on log odds
scales.

10.5 Model fitting

10.5.1 Moses-Littenberg SROC curves (RevMan)

The Moses-Littenberg method (Moses 1993) (Littenberg 1993) provides a simple model for deriving
a SROC. It was one of the earliest models to be proposed and has been used extensively in meta-
analyses of diagnostic test accuracy. It is more akin to a fixed effect than a random effects model, as
it does not provide estimates of the heterogeneity between studies. Even though it has been
superseded by more complex hierarchical models that properly allow for random effects in
diagnostic test accuracy, the Moses-Littenberg model is used in RevMan to provide reviewers with
the facility to undertake purely exploratory analyses based on SROC curves without needing to
export data out of RevMan. Because of the limitations of the Moses-Littenberg method, RevMan
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does not provide parameter estimates or standard errors from this model as inferences should be
based on hierarchical models that take separate account of within study sampling error and
additional unexplained heterogeneity between studies.

A brief description of the Moses-Littenberg method is provided here to explain how the SROC curves
produced by RevMan are derived. The method proceeds in three steps:

(i) the pairs of sensitivity and specificity estimates from each study are transformed onto the log
odds (logit) scale to compute,

D = logit(sensitivity) — logit(1— specificity) , and
S = logit(sensitivity) + logit(L — specificity)

where D is the natural logarithm of the diagnostic odds ratio (InDOR) and S is a quantity related to
the overall proportion of positive test results. S can be considered as a proxy for test threshold since
S will increase as the overall proportion of test positives, in the diseased and non-diseased groups,
increases. The relationship between D and S is expected to be linear.

(ii) The simple linear regression model D = a + /S + error characterizes how test accuracy, as

measured by the diagnostic log odds ratio (D), varies with S, a proxy of the positivity threshold across
studies.

(iii) The estimates of & and [ are then used to obtain the estimated sensitivity across a chosen

range of possible values of specificity using

E(sensitivity) = 1/[1+ exp(— [a + (1+ ﬂ)logit(l— speciﬁcily)]/(l— ,6’))] .

This will provide the estimated SROC curve in the original ROC coordinates. The range of specificities
over which the curve is drawn is usually confined to the range observed in the data to avoid
extrapolation.

10.5.1.1 Properties of Moses-Littenberg SROC curve
Figure 10.4 illustrates three possible SROC curves that could arise from the Moses-Littenberg model.

All share the same value of & (taken to be 3 for each curve), but with varying £ (taken to be -0.35,
0 and 0.35). The point of intersection of all three curves lies on the diagonal where
sensitivity=specificity (5=0). The sensitivity and specificity of the test at this point is also referred to
as Q* (see 10.2.6). When £ =0, the curve is symmetric about the diagonal line given by S=0. The
InDOR is the same (and equal to « ) at every point on this symmetric curve since there is no
association between accuracy (D) and threshold, (S) in the model. However, when £ # 0, the curve

is not symmetric and the expected accuracy (InDOR) increases (or decreases) with threshold.

It is possible in some datasets for the estimated value of £ to lead to improper SROC curves which
do not go through the bottom left (sensitivity=0, specificity =1) and top right (sensitivity=1,
specificity=0) corners of the SROC plot. If f>1 or £ < —1 the estimated SROC curve has the

unintuitive property that sensitivity decreases as 1-specificity (false positive rate) increases. Such
situations may arise if there are outlying studies that are influential in determining the slope of the
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regression line. Excluding the outlier study allows assessment of its influence on the fitted SROC
curve. Extreme values of £ may also result if there is heterogeneity in test accuracy between

subgroups of studies. Such heterogeneity can be explored through subgroup analyses when there
are sufficient studies to allow for this.

Figure 10.4. SROC curves for alternative values of model parameters
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10.5.1.2 Choice of weights

The regression line can be fitted using the method of weighted least squares (WLS) to account for
differences in the sampling error in D between studies by weighting each study by the inverse
variance of INDOR for that study (estimated as var(ln DOR) =1/a+1/b+Yc+1d, wherea,b, c

and d represent the cells of the 2x2 table shown in Table 10.1). An alternative approach is to assign
equal weight to all studies on the basis that the unexplained heterogeneity in test accuracy between
studies is likely to be large compared with the variability due to sampling error (Moses 1993) (lrwig
1995). Both weighted and unweighted (equally weighted) least squares are implemented in RevMan.
In practice, both weighting schemes often lead to similar curves.

Neither approach addresses the issue of sampling error in the explanatory variable (S) (violating a
basic assumption of linear regression) and do not deal appropriately with additional unexplained
heterogeneity in D. Consequently the Moses-Littenberg method for SROC analysis described above
is used only for preliminary exploratory analyses and should not be used to compute confidence
intervals for summary estimates of test accuracy, or to establish whether differences between
subgroups are within the bounds of what we expect to see by chance alone.

10.5.2 Hierarchical models

More statistically rigorous approaches based on hierarchical models have been proposed that
overcome the limitations of the Moses-Littenberg method. In this section, the Bivariate model
(Reitsma 2005) and the hierarchical SROC (HSROC) model of Rutter and Gatsonis (Rutter 2001) are
described and discussed.
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Both hierarchical models involve statistical distributions at two levels. At the lower level, they model
the cell counts in the 2x2 tables extracted from each study using binomial distributions and logistic
(log-odds) transformations of proportions. At the higher level, random study effects are assumed to
account for heterogeneity in diagnostic test accuracy between studies beyond that accounted for by
sampling variability at the lower level. The Bivariate model and Rutter and Gatsonis HSROC model
are mathematically equivalent when no covariates are fitted (Harbord 2007), (Arends 2008), but
differ in their parametrizations. The Bivariate parametrization models sensitivity, specificity and the
correlation between them directly, whereas the Rutter and Gatsonis HSROC parameterization
models functions of sensitivity and specificity to define a summary ROC curve.

Parameter estimates from both the Bivariate model or Rutter and Gatsonis HSROC model can be
input to RevMan to produce

e the summary ROC curve,

e the summary operating point, (i.e. summary values for sensitivity and specificity),
e 2 95% confidence region around the summary operating point, and

e a2 95% prediction region.

This prediction region is one way of illustrating the extent of statistical heterogeneity by depicting a
region within which, assuming the model is correct, we have 95% confidence that the true sensitivity
and specificity of a future study should lie (Harbord 2007).

From the summary ROC curve the expected sensitivity at a given value of specificity (or vice-versa)
can be computed. In addition, summary values and confidence intervals can also be derived for the
positive and negative likelihood ratios or the diagnostic odds ratio at the summary point.

Not all of these possible summary measures will be relevant or appropriate for a given analysis. The
choice of summary measure(s) must be informed by the research question and also the variability in
thresholds used across studies for defining test positivity.

The motivation for choosing one of these two alternative hierarchical models becomes clear when
covariates are to be added to explore heterogeneity in test accuracy. Ultimately, the choice of
method will be determined by the focus one wishes to adopt, and which of the two directly
addresses the research question (see 10.4.1).

Both models require the use of external statistical software, as fitting them requires methods that
are too complex to implement within RevMan. However, publication ready graphical output can be
created in RevMan by estimating parameter estimates from either model to add model summaries
to summary ROC plots.

Alternative specifications for summary curves based on functions of the Bivariate model parameters
have recently been proposed (Arends 2008), (Chappell 2009). These require further evaluation and
are not supported currently in RevMan. This chapter will focus on the Rutter and Gatsonis model as
it is the most established of the HSROC specifications.
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10.5.2.1 Bivariate model

The Bivariate method models the sensitivity and specificity directly. The model can be regarded as
having two levels corresponding to variation within and between studies. At the first level, the within
study variability for both sensitivity and specificity is assumed to follow a binomial distribution. For
sensitivity (denoted by A), the number testing positive y ,, ~ B(”Az’”m) where n,, and 7,

respectively represent the total number of diseased individuals tested and the probability of a
positive test result in that group in study i. Similarly, for specificity (denoted by B), the number
testing negative v, ~ B(n,,,7,) where ny and 7, respectively represent the total number of
non-diseased individuals tested and the probability of a negative test result in that group study i.
The sensitivity-specificity pair for each study must be modelled jointly within study at level one of
the analysis because they are linked by shared study characteristics including the positivity
threshold. At the higher level, the logit-transformed sensitivities are assumed to have a normal
distribution with mean u, and variance azA, while the logit-transformed specificities have a normal
distribution with mean up and variance o’ 5. Their correlation is included by modelling both at once
by a single bivariate normal distribution:

e (W SIECES e
Hp; Hp Ous Op

where ¢°, and ¢”; describe the between-study variability in true logit sensitivity and specificity
respectively, and o ,, is the covariance between logit sensitivity and specificity. The model may also
be parameterized using the correlation p,, =0, /(0 ,0,), which may be more interpretable than
the covariance. The Bivariate model therefore has five parameters when no covariates are included:
4, 1B, oZA, o’ and P,z (Note: we follow Harbord (Harbord 2007) in using u where Reitsma

(Reitsma 2005) used @ in order to avoid confusion with the notation from that of the HSROC model

which follows).

The inclusion of a correlation parameter in the model allows for the expected trade-off in sensitivity
and specificity as the test positivity threshold across studies varies. Where variation between studies
arises through such a trade-off this correlation is expected to be negative, but the correlation may
be positive if there are other sources of heterogeneity.

Reitsma (Reitsma 2005) originally proposed fitting these models by approximating the binomial
within-study distributions by normal distributions. Although this allows the model to be fitted in a
slightly larger range of software (e.g. the MIXED procedure in SAS), Chu (Chu 2006) later
demonstrated that the approximation can perform poorly and recommended that software be used
that can explicitly model the binomial within-study distributions.
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10.5.2.2 Example 1 continued: Anti-CCP for the diagnosis of rheumatoid arthritis.

We now undertake the first stage of a formal statistical analysis of the data from a review
(Nishimura 2007) of anti-cyclic citrullinated peptide antibody (anti-CCP). If it can be presumed that
the anti-CCP test is deemed positive if any anti-CCP antibody is detected and that detection can be
considered a common threshold, it makes sense to focus on summary estimates for sensitivity and
specificity.

As noted in the descriptive analyses of these data, there appears to be greater variability in
estimated sensitivity than specificity across studies, which could arise either through heterogeneity
or through estimates of sensitivity being based on smaller samples than estimates of specificity. The
parameter estimates from the Bivariate model are shown below.

Fit Statistics

-2 Log Likelihood 545.6
AIC (smaller is better) 555.6
AICC (smaller is better) 556.4
BIC (smaller is better) 563.6
Parameter Estimates
Standard
Parameter Estimate Error DF t value Pr > |t]| Alpha Lower Upper Gradient
msens 0.6534 011275 B5 5.13 <.0001 0.05 0.3946 0.9122 3.959E-6
mspec 3.1090 011459 B5 21.31 <.0001 0.05 2.8128 3.4052 3.473E-8
s2usens 0.5426 0.1463 35 3.71 0.0007 0.05 0.2455 0.8397 -6.62E-6
s2uspec 0.5717 0.1873 35 3.05 0.0043 0.05 0.1914 0.9520 1.36E-6
covsesp 0.2704 0.1199 35 -2.26 0.0304 0.05 -0.5137 0.02710 -1.59E-6
Covariance Matrix of Parameter Estimates
Row Parameter msens mspec s2usens s2uspec covsesp
1 msens 0.01625 -0.00741 0.000890 -0.00004 -0.00004
2 mspec -¢ .02128 -0.00006 0.004286 -0.00116
3 s2usens 0.000890 =0 .00006 0.02142 0.003997 -0.00874
4 s2uspec -0.00004 0.004286 0.003997 0.03509 -0.01184
5 covsesp -0.00004 -0.00116 -0.00874 -0.01184 0.01436
| Sengtiy The parameter estimates in the boxes above can

be input to RevMan to produce the summary
point, 95% confidence region, and 95%
prediction region shown in the Figure. The
Bivariate output box in RevMan requires: the
summary estimate for logit(sensitivity) which is
0.6534, the summary estimate for
logit(specificity) which is 3.1090; and the
variances of the random effects for
logit(sensitivity), logit(specificity) and their
covariance which are 0.5426, 0.5717 and -0.2704
respectively (all of these estimates appear in the

red box). Computation of confidence and

e prediction regions also requires the standard
T error of the summary estimates for
logit(sensitivity), logit(specificity) and their covariance which are 0.1275, 0.1459 and -0.00741

respectively (shown in the blue boxes).

The variance coefficients indicate similar heterogeneity in sensitivities and specificities. The
magnitude of the heterogeneity is also evident in the size of the prediction region on the SROC plot.
The summary estimate of sensitivity and specificity is shown by the solid black dot. The sensitivity
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and specificity at this point can be computed by inverse transformation of the logit estimates to give
a sensitivity and specificity of 0.66 and 0.96 respectively. Confidence intervals can be computed by
inverse transformation of intervals computed on the logit scale.

The plot shows a potential outlier, Hitchon 2004 with a sensitivity of 0.63 and specificity of 0.65. A
sensitivity analysis can be performed to assess the influence of this study on the summary estimates.

10.5.2.3 The Rutter and Gatsonis HSROC model

The HSROC model proposed by Rutter and Gatsonis (Rutter 1995), (Rutter 2001) is based on a latent
scale logistic regression model (McCullagh 1980), (Tosteson 1988). The HSROC model assumes that
there is an underlying ROC curve in each study with parameters & and £ that characterize the
accuracy and asymmetry of the curve, in a similar (though technically distinct) way to the a and £

parameters in the linear regression method of Moses and Littenberg. Unlike the Moses-Littenberg
model, the Rutter and Gatsonis model is constrained to provide a ROC curve where sensitivity
cannot decrease as specificity increases.

Accuracy, defined in terms of the INDOR, determines the position of the summary curve relative to
the top left corner of the ROC axes. As with the SROC regression method, each study contributes
data at a single threshold to the analysis. The 2x2 table for each study then arises from
dichotomizing at a positivity threshold denoted by €. The parameters « and @ are assumed to
vary between studies: both are assumed to have normal distributions as in conventional random-
effects meta-analysis.

The HSROC model can also be regarded as having two levels corresponding to variation within and
between studies. At the first level, the number of diseased individuals who test positive is denoted

by y, forthe i study, and the corresponding number of non-diseased who test positive is denoted
by y,,. For each study (i), the number testing positive in each disease group () is assumed to follow

a binomial distribution such that y, ~ B(n 7[17), j =12 where n; and 7, respectively

l‘j!
represent the total number tested and the probability of a positive test result. The number testing
positive in each diseased and non-diseased pair is analysed jointly within each study at level one of
the analysis.

The model takes the form
logit(z;) = (9,. +a, dis; )exp(— p disl.j)

where disl.j represents the ‘true’ disease status (coded as -0.5 for the non-diseased and 0.5 for the
diseased) thereby taking into account the within study variability at level one. Using the usual
terminology for this model, we generally refer to &, represents the proxy for positivity threshold
calculated as the mean of the log odds of a positive test result for the diseased and the log odds of a
positive test result for the non-diseased groups in study i (equivalent to Si/Z in the Moses-
Littenberg model). «; (the INDOR for study i ) represents a measure of diagnostic accuracy in the "

study that incorporates both sensitivity and specificity for that study. The scale parameter ( )

provides for asymmetry in the SROC by allowing accuracy to vary with threshold. Since each study

26 |Page




contributes only one estimate of sensitivity and specificity at a single threshold, it is necessary to
assume that the shape of the true underlying ROC curve in each study is the same, and hence £ is

fitted as a fixed effect.

The threshold and diagnostic accuracy for each study are specified as random effects and are
assumed to be independent (uncorrelated) and normally distributed. The accuracy parameter has

mean A (capital lambda) and variance 0'5 , while the positivity (threshold) parameter has mean ®
(capital theta) and variance 0'2 . The shape parameter ( /) is estimated using data from the studies

considered jointly, assuming normally distributed random effects for test accuracy. When no

covariates are included, the HRSOC model also has five parameters: A, ®, 3, 05 and 0'; .

A summary ROC curve can be constructed from the HSROC model by choosing a range of values of 1-
specificity and using the estimated average location parameter ( A ) and scale parameter ( 5 ) to

compute the corresponding values for sensitivity. The expected sensitivity at a chosen false positive
fraction (1-specificity) is given by

sensitivity _ ]/b- n exp(_(Ae—0.5ﬂ+|0git(l—speciﬁcity)e’/f ))J .

When £ =0, test accuracy can be summarized by A which represents the expected accuracy (log

DOR), and the resulting summary curve will be symmetric.
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10.5.2.4 Example 2: Rheumatoid Factor as a marker for Rheumatoid Arthritis.

In this example we will investigate the diagnostic performance of Rheumatoid factor (RF) as a
marker for rheumatoid arthritis (RA). The 50 studies included in the analysis are taken from the
same review as Example 1 (Nishimura 2007). The reference standard was again based on the 1987
revised American College of Rheumatology (ACR) criteria or clinical diagnosis.

The cut-off for test positivity for RF varied between studies and ranged from 3 to 100 U/ml. The
variability in threshold used to define test positivity between studies is reflected in the variability in
study specific estimates of sensitivity and specificity shown in the SROC plot shown in the Figure.
Because of the variation in threshold across studies, a summary ROC curve is appropriate to
summarise these data. The HSROC model was used to estimate a summary curve using Proc
NLMIXED in SAS.

Proc NLMIXED Output:

Fit Statistics

-2 Log Likelihood 806.9

AIC (smaller is better) 816.9

AICC (smaller is better) 817.6

BIC (smaller is better) 826.5

Parameter Estimates
Standard

Parameter Estimate Error DF t Vvalue Pr > |t] Alpha Lower Upper Gradient
alpha 2.6016 9.1862 48 13.97 <.0001 0.05 2.2273 2.9759 2.227E-6
theta -0.4370 9.1469 48 -2.98 0.0046 0.05 -0.7323 -0.1417 4.573E-6
beta 0.2267 9.1624 48 1.40 0.1691 0.05 -0.09978 0.5532 -1.16E-6
s2ua 1.3014 ).3046 48 4.27 <.0001 0.05 0.6890 1.9137 -6.42E-7
s2ut 0.5423 ».1237 48 4.39 <.0001 0.05 0.2937 0.7909 -6.99E-6
{ Bensivity . The parameter estimates highlighted above can

be input to RevMan to draw the summary

- curve as shown in Figure; 2.6016 estimates the
T mean of the random effects for accuracy (i.e.
A, lambda), -0.4370 estimates the mean of the
random effects for threshold (theta), 0.2267

estimates the shape parameter (beta), 1.3014

07T
06T

051

estimates the variance of the random effects

o4t

for accuracy, and 0.5423 estimates the variance
of the random effects for threshold. The

037

resulting curve shows the expected trade-off

0z+
between sensitivity and specificity across

o thresholds.

0a i [ 06 s 0.4 [iE] 032

M When interpreting the results of the analysis, it
is important to note that RF constitutes part of the ACR criteria. Hence, there is risk of bias in the
estimated curve since the index test is incorporated in the reference standard. This could result in an
overestimation of the diagnostic accuracy of RF, and could result in giving a distorted picture of the
expediency of using RF as a first test for resolving uncertainty in a suspected case of rheumatoid
arthritis.
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10.5.3 Investigating heterogeneity

In diagnostic reviews it is usual to observe variability in test accuracy between studies that is
considerably greater than would be expected from within study sampling error alone. This is
reflected in the model specifications for the Bivariate and HSROC models which both allow for
random study effects. For the Bivariate model, the summary estimates of sensitivity and specificity
represent an average operating point across studies. Similarly, the estimated summary ROC curve
represents an average ROC curve across studies on the assumption that the true underlying ROC
curve in each study has the same shape.

Some of this heterogeneity in test accuracy between studies is likely to arise due to differences in
patient characteristics, test methods, study design and other factors. Exploratory analyses can be
conducted in RevMan to investigate whether such study characteristics appear to be associated with
test accuracy using the Moses-Littenberg SROC method, but this method cannot be used to provide
valid statistical evidence of such associations. A separate SROC curve is fitted for each subgroup,
and the results can be compared graphically across subgroups. The feasibility of such analyses will
obviously be influenced by the number of available studies in each subgroup.

Statistically, it is generally more efficient to make use of all of the data available across studies when
investigating heterogeneity by adding study level covariates to a hierarchical model to identify
factors associated with diagnostic test accuracy. This meta-regression approach also allows
statistical inferences to be made. It is usually assumed that each covariate has a fixed effect when
added to the model. This approach is also applicable to test comparisons, as discussed in 10.5.4.

The Bivariate and HSROC models differ in how study level covariates are included. Published
accounts of the Bivariate method focus on the estimation of a summary estimate of sensitivity and
specificity, and how the expected values of these may vary with study level covariates. Published
accounts of the HSROC approach, by contrast, focus on the estimation of the summary ROC curve as
the basis for assessing test accuracy, and how the position and shape of the curve may vary with
study level covariates.

Both models allow the use of categorical and continuous covariates. In practice, covariates relating
to study characteristics are usually categorical and indicator variables are created as is done in
standard regression modelling. For continuous covariates, particular care should be taken to check
that the assumption of linear associations are valid. For the Bivariate model, this refers to
association with logit(sensitivity) and/or logit(specificity). For the HSROC model, this refers to
association with the accuracy parameter (InDOR) and/or the threshold parameter.

The uses and limitations of investigating heterogeneity using sub-group analysis and meta-regression
in Section 9.6 of the Cochrane Handbook for Systematic Reviews of Interventions (Deeks 2008)
applies equally to diagnostic studies.

10.5.3.1 Heterogeneity and Regression Analysis using the Bivariate model

The Bivariate model allows covariates to affect summary sensitivity or summary specificity, or both.
Using the notation of Harbord (Harbord 2007), and assuming that we have a single study level
covariate Z that may affect both sensitivity and specificity, then the model can be extended as

follows:
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As before, 2. represents the covariance matrix for the random effects for logit sensitivity and logit
specificity. If the covariate does explain some of the heterogeneity in sensitivity and/or specificity

then we would expect that the estimated variance for one or both random effects to be reduced.
The estimated covariance (correlation) parameter may also change.

Assuming that we have a binary study level covariate (Z) coded as 0 or 1 to represent the two groups

of studies, then ¢, estimates the logit sensitivity at the expected summary operating point for the
referent group (Z =0), and x, + v, estimates the logit sensitivity at the expected summary
operating point for the other group (Z =1). Hence, eXp(vA) estimates the odds ratio for sensitivity in
group 1 relative to the referent group. The expected sensitivity is estimated as

exp(uz, )/(L+exp(u, )) for the referent group of studies, and as exp(z, + v, )/(L+exp(u, +v,))
for the other group. Comparisons of specificity between the two groups of studies follow the same

approach as described above based on 1, and v,. The fit of the model, with and without the

additional parameters v, and v, can be used to test whether the covariate is associated with

sensitivity and or specificity. This joint test will have 2 degrees of freedom if Z is binary. Separate
tests of statistical significance of the covariate with sensitivity and specificity can also be conducted,

first to assess whether v , differs from 0 (a significant result indicates that there is evidence that

sensitivity differs between the two groups of studies) and secondly whether v differs from 0 (a

significant result indicates that there is evidence that specificity differs between the two groups of
studies). See also 10.5.3.4 relating to criteria for model selection.

The standard error of a new estimate based on a function of the model parameter estimates can be
obtained using the delta method on the assumption that the error distribution of the new estimate
is approximately normal. The delta method is implemented in standard statistical software such as
SAS and Stata.

The model is easily extended to allow for more than one covariate. However, this may not be
feasible in practice if the number of studies is not large. Also, it is important to note that a covariate
may only be associated with sensitivity and not specificity, or vice versa. It is not required that the
same covariates are fitted for both sensitivity and specificity, although this may commonly be the
case. Where a covariate (or covariates) is allowed to affect both the sensitivity and the specificity,
the Bivariate model is equivalent to an HSROC model in which the covariate or covariates are
allowed to affect both the accuracy and the positivity threshold but not the shape parameter.
However, using the estimates from the Bivariate model to test for the effect of covariates on the
shape and position of the summary ROC curve is not straightforward. Using the HSROC model
parameterization allows this to be done in a more direct and straightforward manner.

It is usually assumed that the variance of the random effects (and their correlation in the case of the
Bivariate model) are not associated with the covariate. This is probably a reasonable assumption in
most analyses investigating heterogeneity in test accuracy for a single index test. However, for
analyses that compare different index tests, this assumption is less likely to hold. See 10.5.4.
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10.5.3.2 Example 1 (cont).: Investigation of heterogeneity in diagnostic performance of
anti-CCP

The studies included in the review to assess the diagnostic performance of anti-CCP used two
different generations of the assay: first generation (CCP1, 8 studies) and second generation (CCP2,
29 studies). A binary covariate for generation of CCP with coefficient se2 for sensitivity, and and
coefficient sp2 for specificity were added to the model. The covariate was coded as 0 for CCP1 and 1
for CCP2. Allowing test performance to vary by generation of CCP in the model resulted in a —2Log
Likelihood of 533.4, a reduction of 12.2 compared with the model that contained no covariates.
Hence, there is statistical evidence (chi-square=12.2, 2df, P=0.002) that test performance is
associated with generation of CCP but further investigation is required to ascertain whether this
association is for sensitivity, specificity, or both.

The parameter estimates required to draw the summary points and regions in RevMan can again be
extracted from the Proc NLMIXED output (see Appendix for SAS program). The variances of the
random effects for logit(sensitivity) and logit(specificity), and their covariance are common for both
generations of CCP (see blue box in output). For the referent group (CCP1 in this case) the summary
estimates for logit(sensitivity), logit(specificity), the corresponding standard errors and covariance
are shown in the red boxes in the output. The logit(sensitivity) for CCP2 is estimated by msens+se2,
and the logit(specificity) is estimated by mspec+sp2. The standard errors and covariance of these
additional estimates can be obtained using the ESTIMATE command in Proc NLMIXED as shown in
the program in the Appendix. Alternatively, a simple way of getting these results is to refit the model
using CCP2 as the referent group (coded as 0) and CCP1 as the other group (coded as 1). The fit of
the model and results for the random effects will be the same, but the estimates for ‘msens’ and
‘mspec’ will now be for CCP2 and hence the required estimates can then be extracted from the
standard output (revised output not shown). The resulting plot is shown in the Figure below.

Fit Statistics

-2 Log Likelihood 533.4

AIC (smaller is better) 547.4

AICC (smaller is better) 549.1

BIC (smaller is better) 558.6

Parameter Estimates
Standard

Parameter Estimate Error DF t Vvalue Pr > |t] Alpha Lower Upper Gradient
msens 0.09653 0.2203 35 -0.44 0.6640 0.05 -0.5438 0.3507 0.000317
mspec 3.4467 0.2982 35 11.56 <.0001 0.05 2.8412 4.0522 -0.00005
s2usens 93558 01022 35 3.52 0.0012 0.05 0.1524 0.5673 8.325E-6
s2uspec 0.5399 0.1802 35 3.00 0.0050 0.05 0.1742 0.9057 0.000159
covsesp -0.1969 0.09836 35 -2.00 0.0531 0.05 -0.3965 0.002824 -0.00004
se2 0.9626 0.2513 35 3.83 0.0005 0.05 0.4523 1.4728 0.000319
sp2 -0.4302 0.3377 35 -1.27 0.2111 0.05 -1.1158 0.2554 -0.00004

Covariance Matrix of Parameter Estimates
Row Parameter msens mspec s2usens s2uspec covsesp se2 sp2
1 msens 0.04854 -0.02464 -0.00012 -0.00001 -0.00003 -0.04855 0.02465
2 mspec 0.08895 -0.00002 ©0.004771 -0.00065 0.02463 -0.08834
3 s2usens -0. 000 -0.00002 0.01044 0.002118 -0.00440 0.000693 -0.00005
4 s2uspec -0.00001 0.004771 0.002118 0.03246 -0.00860 -0.00006 -0.00039
5 covsesp -0.00003 -0.00065 -0.00440 -0.00860 0.009674 0.000100 -0.00091
6 se2 -0.04855 0.02463 0.000693 -0.00006 ©.000100 0.06317 -0.03160
7  sp2 0.02465 -0.08834 -0.00005 -0.00039 -0.00091 -0.03160 0.1141

31|Page




1_S_egsmvmf
08+ <)<> o
0ag O e}
0 ?-O">

06 C@‘& <
| o o
0

L
v 4’%;
0l
o2t

014

'8 08 i3 [ 0’5 04 03 [] 01

Specificity

Legend

[ Generation: CCP1
QGeneratlun. CCP2

Based on the confidence regions in the figure it
is clear that the sensitivity varies by generation,
but not specificity. The summary estimates of
specificities were: 0.97 (95%Cl 0.95, 0.98) for
CCP1 and 0.95 (95%Cl 0.94, 0.97). The summary
estimates of sensitivity were 0.48 (95%Cl 0.37,
0.58) for CCP1 and 0.70 (95% Cl 0.65, 0.75) for
CCP2. These results indicate an improvement in
sensitivity, without loss of specificity for
generation 2 compared with generation 1 CCP.
Further models may be fitted to formally test
the effect of removing the covariate for
specificity from the model.

Comparing the output from this model with

that of the model with no covariates (see 10.5.2.1), it is clear that the variances of the random

effects have reduced, particularly for sensitivity. Also, checks of the distributions of the random

effects (not shown here) show that adjusting for generation of anti-CCP results in distributions that

more closely follow a normal distribution.

10.5.3.3 Heterogeneity and Regression Analysis using the Rutter and Gatsonis HSROC

model

The HSROC model allows covariates to be added to explore heterogeneity in test positivity

(threshold), position of the curve (accuracy) and shape of the curve. A covariate may be associated

with some, but not all three model parameters.

Assuming that we have a binary study level covariate (Z) coded as 0 or 1 to represent the two groups
of studies, then the HSROC model can be extended to estimate the log odds of a positive test for

study i and disease group j as follows:

logit(z,) = ((6, +12,)+ (e, + 22, )dis, Jexp(— (8 + 6z, )dis, )

where ¥, Aand ¢ are all assumed to be a fixed effect. Hence, the distribution of the random effects

for threshold and accuracy are now given by &, ~ N(@ + }/Zl.,agz), and o, ~ N(A + ﬂZl.,Gj)

respectively. The shape parameter for the summary curves for the two groups is estimated as £ for

the referent group of studies (Z =0) and £+ for the other group (Z =1). If the covariate does

explain some of the heterogeneity in threshold and/or accuracy then we would expect that the

estimated variance for one or both random effects to be reduced.

The first step would be to investigate the shape of the summary curve. If o # 0, then the shape of

the summary curve differs for the two groups of studies which means that the relative accuracy of

the test will vary with threshold. (Figure 10.5(a)) This represents the most complex scenario, and the

model would not generally be simplified any further. In practice, it is difficult to detect a statistically

significant difference in the shape of the curve across groups because the number of studies in each
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group is usually limited. Also, it is important when investigating shape to consider the effect of
outlying and potentially influential studies. When there is good evidence that the curves differ in
shape, a plot of the estimated curves for the two groups will aid in interpretation. Focusing on the
region of the plot that covers the observed data, it is then possible compare the estimated curves.
Where one curve consistently lies above another, there is evidence of superior accuracy even
though the differential between the curves will vary across thresholds. If the curves cross, then the
interpretation of which curve shows superior accuracy will depend on threshold.

If, based on statistical evidence, similarity of curve shapes and investigation of potentially influential

studies, it can be assumed that & = 0, then the covariate can be removed for shape. The estimated

SROC curves for the two groups will then have the same shape, even though they are not symmetric
(Figure 10.5(b)), and the relative diagnostic accuracy of the two curves can be summarized using the
relative diagnostic odds ratio (RDOR = eXp(/l)). The RDOR will be constant across all possible

values of @. If the model can be simplified further and both curves can be assumed to be

symmetric, i.e. /=0, the RDOR again provides a measure of relative accuracy as described above.

Figure 10.5 Summary ROC curves with and without a difference in shape
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If the curves can be assumed to have the same shape (either both asymmetric or both symmetric),
then the question is whether the covariate is associated with accuracy. If there is evidence that

A # 0, then the RDOR gives an estimate of the overall relative diagnostic accuracy. This would
correspond to a clear separation between the SROC curves for the two groups. Alternatively, 4 =0
implies that there is no separation between the curves and no association between the covariate
and accuracy.

If A can be assumed to be 0, then the model can be further simplified by removing the covariate for
accuracy which will result in a single summary curve (assuming that the shape of the curve is the
same for the two groups of studies). An association between the covariate and the threshold
parameter (i.e. ¥ # 0) would indicate that the underlying test positivity rate for the two groups of

studies differs. Such an association is often difficult to interpret unless the curves can be assumed to
have the same shape and accuracy.

When the actual cut-point to define a positive test is available for each study, this can be fitted as a
covariate to the threshold parameter to allow estimation of the expected sensitivity and specificity
on the summary curve at a selected cut-point. However, this presumes a particular functional
relationship between threshold and sensitivity and specificity.

10.5.3.4 Criteria for model selection
Irrespective of which model is used, reviewer authors must specify what modelling strategy will be
used for adding or removing covariates and what criterion will be used to decide whether or not a
covariate should be included in a model.

The decision as to whether a covariate should be retained in the model may be based in part on
statistical tests. Commonly used software for fitting these models, such as SAS for instance, will
provide Wald statistics and corresponding p-values for each variable in the model. A p-value based
on the likelihood ratio chi-squared statistic is generally more reliable. The chi-squared statistic is
computed as the change in the -2Log likelihood when a covariate is added (or removed) from a
model. The degrees of freedom is equal to the difference in the number of parameters fitted in
these models. The effect of adding (or removing) covariates on measures of model fit such as
Akaike's information criterion (AIC) or Bayesian information criterion (BIC) can also be used. The
deviance information criterion (DIC) is commonly used for models fitted by Markov chain Monte
Carlo (MCMC) simulation

Likelihood ratio tests can also be used to assess the significance of the variance terms for the two
random effects in either model, or whether allowing for variance to relate to test accuracy provides
a better fitting model.
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10.5.3.5 Example 2 (cont.): Investigating heterogeneity in diagnostic accuracy of
Rheumatoid Factor

We will now investigate whether the laboratory technique used to measure RF is associated with
diagnostic performance. Of the 50 studies, 15 used nephelometry (N), 16 latex agglutination (LA), 16
ELISA, one study used RA hemagglutination, and 2 did not report the method used. The analysis is
restricted to studies that used N, LA or ELISA. The HSROC model was again used because of the
variation in threshold used for test positivity across studies. Covariates (indicator variables for
technique, using LA as the referent category) were included in the model to assess whether
accuracy, threshold, or the shape of the SROC curve varied with technique.

The -2Log likelihood for the most complex model that included covariates for shape, accuracy and
threshold parameters was 752.9. The increase in the -2Log likelihood was negligible (an increase to
753.1) when the covariate for shape was removed from the model (chi-square = 753,1-752.9=0.2, 2
df, P=0.90). Parameter estimates for the model that assumes a common shape are given below, and
the corresponding HSROC curves shown in the Figure. The estimates of alpha, theta and beta can be
input to RevMan to obtain the summary curve for the referent group (LA). The variances of the
random effects for threshold and accuracy are common to all three techniques, as is the shape
parameter beta. However, the threshold and accuracy parameter estimates for ELISA are given by
theta+tl and alpha+al respectively, and for N are given by theta+t2 and alpha+a3.

Fit Statistics

-2 Log Likelihood 753.1

AIC (smaller is better) 771.1

AICC (smaller is better) 773.2

BIC (smaller is better) 787.7

Parameter Estimates
Standard

Parameter Estimate Error DF t Vvalue Pr > |t] Alpha Lower Upper Gradient
alpha 2.4552 0.3245 45 7.57 <.0001 0.05 1.8017 3.1087 -0.0004
theta -0.5490 0.2137 45 -2.57 0.0136 0.05 -0.9794 -0.1186 ©0.000139
beta 0.1995 0.1702 45 1.17 0.2472 0.05 -0.1432 0.5423 -0.00018
s2ua 1.2865 0.3109 45 4.14 0.0002 0.05 0.6603 1.9128 -0.00038
s2ut 0.4786 0.1139 45 4.20 0.0001 0.05 0.2492 0.7080 0.00062
al 0.2483 0.4408 45 0.56 0.5760 0.05 -0.6395 1.1361 -0.00038
a2 0.3328 0.4439 45 0.75 0.4573 0.05 -0.5612 1.2269 ©0.000093
t1 -0.1962 0.2614 45 -0.75 0.4568 0.05 -0.7227 0.3303 -0.00017
t2 0.4960 0.2627 45 1.89 0.0654 0.05 -0.03301 1.0250 ©0.000366

L | Sensivity

From the figure, it appears that LA may be less
accurate than the other 2 methods, however,
removal of the covariate for accuracy (coefficients
al and a2) from the model has negligible effect on
the fit of the model (x’= 753.7-753.1=0.6 on 2 d.f.,
p=0.74) indicating no statistical evidence of a
difference in diagnostic accuracy of RF according to

technique. This indicates that it is reasonable to fit
a single summary ROC for RF.
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10.5.4 Comparing Index Tests

For many diagnostic reviews, a key objective is to compare the diagnostic accuracy of two
alternative index tests that may be used to diagnose the same condition. In this section, the focus
will be on the comparison of two index tests, but the approach can be extended to allow for more
than two tests.

Two approaches are generally adopted for test comparisons. The first approach utilises test accuracy
data from all eligible studies that have evaluated one or both tests. The second approach restricts
the analysis to studies that have evaluated both tests either in the same individuals, or have
randomized individuals to undergo one or other of the two tests. The second approach has
advantages because the comparison is less likely to be biased due to confounding and hence these
results should be relied upon where possible. However, the number of studies that report such
direct comparisons is often very limited, which means that such an analysis may not be feasible or
might only be considered as a sensitivity analysis (see 10.6.1)

10.5.4.1 Test comparisons based on all available studies

Often, many of the available studies evaluate only one of the tests of interest. By using all studies
that have evaluated at least one of the tests, we maximize the number of studies in the analysis.
However, the studies are likely to be heterogeneous in terms of design and patient characteristics
that are associated with test accuracy and hence confounding may be an issue. In preliminary
exploratory analyses in RevMan this can be dealt with by comparing the tests within subgroups of
studies that are homogeneous with respect to important potential confounders such as study design
or spectrum of disease. The value and feasibility of such exploratory analyses will be affected by the
number of available studies, and missing or inconsistent reporting across studies of information on
potential confounders.

The statistical methods described in this section follow directly from the earlier description of
hierarchical models and how they can be used to investigate heterogeneity in test accuracy. For the
comparison of two index tests, the type of test is represented by a binary covariate that is used to
identify the test that gave rise to each 2x2 table included in the analysis. Confounders can
potentially be adjusted for, however this is often difficult to do in practice because the number of
studies is small and/or data on important confounders may be poorly recorded or incomplete.

Both the Bivariate model and the Rutter and Gatsonis HSROC model can be used to investigate the
relative accuracy of two index tests. However, as noted previously, the choice of approach will be
influenced by the nature of the available data, and the interpretation of the results will also depend
on which approach is used.

10.5.4.2 Test comparisons using the Bivariate model

If, for each index test, the available studies have used a consistent cut-point on a continuous or
ordinal scale to define test positivity then the Bivariate model provides an appropriate framework
for test comparisons. It may also be reasonable to assume a consistent cut-point when a test
comprises a ‘test kit’ that produces positive and negative results (such as a coloured line appearing
on a device). By adopting the same strategy described earlier (10.5.3.1), a binary covariate for test
type can be included in the model to investigate whether the expected sensitivity and/or specificity
differs between the tests.
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Care must be taken with the interpretation of the results of such a model, particularly if the
common cut-point for test positivity for either test is applied to a continuous or ordinal scale. Any
inferences made about the relative diagnostic accuracy of the two tests is only valid at the chosen
cut-point for each of the two tests and cannot be extrapolated to other possible cut-points. Where
other cut-points are reported, the analysis can be repeated using the available data to investigate
the relative diagnostic accuracy of the tests at those alternative cut-points.

Because we are analyzing test accuracy data for two alternative index tests, it may not be reasonable
to assume that the variances of the random effects for logit(sensitivity) and logit(specificity) are the
same for the two tests. The Bivariate model can be extended to allow the variance of the random
effects for both to depend on the covariate for test type. This will also affect the estimated
correlation between them. Statistically, estimation of the variances of the random effects for
logit(sensitivity) and logit(specificity) and correlation between them is subject to a higher level of
uncertainty than for the main parameters of interest. However, if based on preliminary plots of the
study level estimates of sensitivity and specificity in ROC space there are marked differences in
heterogeneity between studies for the two tests, it is advisable to assess whether the assumption of
equal variances of random effects for the two tests is reasonable. This is usually done by comparing
the fit of the alternative models (variances do or do not depend on the covariate for test type) using
a likelihood ratio test. A comparison of the main estimates of interest between the alternative
models is also useful to assess whether conclusions about the relative sensitivity and/or specificity of
the tests are robust to assumptions about the variances of the random effects. Again, such an
investigation will not be feasible if the number of studies is small.

It is usual for most of the studies in this approach to the analysis of test comparisons to have
evaluated only one of the tests, but some studies will have evaluated both. If the proportion of
studies that have evaluated both is very small, then treating the results of the two tests in a study as
if they were obtained from different studies is unlikely to affect the results. Although this is often
done in practice, such an approach is not recommended if the proportion of studies evaluating both
tests is not small because it is likely to result in inappropriate standard errors for the test comparison
parameters for sensitivity and specificity. In that case the paired sensitivity/specificity data for both
tests from each study should be at level one of the analysis, and a binary covariate for test type
included to identify which 2x2 table corresponds to each test.
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10.5.4.3 Example 3: CT versus MRI for the diagnosis of coronary artery disease

Schuetz et al (Schuetz 2010) evaluated the diagnostic performance of multislice computed
tomography (CT) and magnetic resonance imaging (MRI) for the diagnosis of coronary artery disease
(CAD). Prospective studies that evaluated either CT or MRI (or both), used conventional coronary
angiography (CAG) as the reference standard, and used the same threshold for clinically significant
coronary artery stenosis (a diameter reduction of 50% or greater) were included in the review. A
total of 103 studies provided a 2x2 table for one or both tests and were included in the meta-
analysis: 84 studies evaluated only CT, 14 evaluated only MRI, and 5 studies evaluated both CT and
MRI. (See Appendix for data and SAS programs).

Because the studies were selected based on a common threshold for clinically significant coronary
artery stenosis, the Bivariate model was used for data synthesis and test comparison. In the first
stage of the analysis, we base our test comparison on all studies that evaluated at least one test. The
approach follows closely the method illustrated in Example 1 for exploring heterogeneity using the
Bivariate model.

A binary covariate (testtype) is added to the model which is coded as 0 if the 2x2 table is for MRI
(the referent category), and coded as 1 if the 2x2 table is for CT. The five studies that evaluated both
tests contribute a 2x2 table for each test, hence there are 19 studies included for MRI and 89 studies
included for CT. Allowing test performance to vary by type of test resulted in a -2Log likelihood of
953.0, a reduction of 42.5 compared with the model that contained no covariates. Hence, there is
statistical evidence (chi-square=42.5, 2df, P<0.001) that sensitivity and/or specificity are associated
with test type. Removing the covariate for sensitivity from the model (chi-square=976.7-953.0=23.7,
1df, P <0.001) shows strong statistical evidence of a difference in sensitivity between the two tests.
Similarly, removing the covariate for specificity from the model (chi-square=976.2-953.0=23.2, 1df, P
<0.001) shows strong statistical evidence of a difference in specificity between the two tests.

The SAS output for the model that allows both sensitivity and specificity to vary by test is:

Fit Statistics

-2 Log Likelihood 953.0
AIC (smaller is better) 967.0
AICC (smaller is better) 967.5
BIC (smaller is better) 985.5

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient
msens 2.1771 0.2457 101 8.86 <.0001 0.05 1.6896 2.6645 0.000046
mspec 9.8754 0.2111 101 4.15 <.0001 0.05 0.4566 1.2942 -0.00008
s2usens .8749 0.2293 01 3.82 0.0002 0.05 0.4201 1.3297 ©0.000033
s2uspec 9.8447 0.1696 101 4.98 <.0001 0.05 0.5084 1.1810 -4.31E-6
covsesp 9.1803 0.1384 101 1.30 0.1956 0.05 -0.09424 0.4548 -0.00002
se_CT 2032 0.2625 101 4.97 <.0001 0.05 0.7827 1.8240 0.000053
sp_CT 1.0415 0.2154 101 4.84 <.0001 0.05 0.6143 1.4687 -0.00005
Covariance Matrix of Parameter Estimates

Row Parameter msens mspec s2usens s2uspec covsesp se_CT sp_CT
1 msens 0.06038  0.005241 0.01100 0.000342 0.002242 -0.05262 -0.00404

2 mspec 5 0.04457 ©.000518 0.003360 0.001651 -0.00376 -0.03861

3 s2usens 0.01100 0.000518 0.05257 0.000694 0.007608 0.003839 -0.00060

4  s2uspec 0.000342 0.003360 0.000694 0.02875  0.005537 -0.00023  0.000438

5 covsesp 0.002242 0.001651 0.007608  ©.005537 0.01915 0.001155 -0.00110

6 se CT -0.05262 -0.00376 0.003839 -0.00023  0.001155 0.06889  0.004479

7 sp_CT -0.00404 -0.03861 -0.00060 0.000438 -0.00110 0.004479 0.04638

Additional Estimates
Standard

Label Estimate Error DF t value Pr > |t] Alpha Lower Upper
logitsens CT 3.4804 0.1550 101 22.45 <.0001 0.05 3.1729 3.7879
logitspec CT 1.9169 0.1172 101 16.36 <.0001 0.05 1.6844 2.1494
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Covariance Matrix of Additional Estimates
Row Label Covl Cov2
1 logitsens CT 0.02403 0.001916

2 logitspec CT 0.00[1916 9.01373

The estimated logit(sensitivity) and logit(specificity) for the referent category (MRI) are given by
msens and mspec respectively. These estimates, their standard errors and their covariance are
shown in the red boxes. The ESTIMATE command in SAS has been used to obtain the corresponding
estimates for CT (shown in the blue boxes). The variances of the random effects and their covariance
are shown in the green box.

The above estimates can be input to RevMan to
o produce a ROC scatter plot with summary

& operating points for MRl and CT and their

0 confidence regions superimposed as shown in
) the figure where the black symbols represent CT

<& and the red symbol represent MRI. Because of
. . the large number of studies for CT, the summary
nst estimate and region are difficult to see. The
g figure could be redrawn with just the summary
points and regions and shown separately from
the ROC scatter plot.
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found in the columns headed “lower” and

“upper”. Using inverse transformation, the
summary estimates for sensitivity are 0.90 (95%Cl 0.84, 0.93) for MRI and 0.97 (95% Cl 0.96, 0.98)
for CT . The summary estimates for specificity 0.71 (95%Cl 0.61, 0.78) for MRI and 0.87 (95%Cl 0.84,
0.90) for CT. Hence, based on this analysis, there is strong evidence that CT has higher sensitivity
and specificity than MRI, for detecting clinically significant coronary artery stenosis defined as a
diameter reduction of 50% or more.

10.5.4.4 Test comparisons using the Rutter and Gatsonis HSROC model

Simple separate comparisons of summary estimates of sensitivity (or specificity) of alternative tests
can be misleading if the included studies have used different cut-points to define test positivity. In
this situation, comparisons based on SROC curves provide a more informative approach.

The hierarchical modelling strategy used to investigate heterogeneity described earlier for the Rutter
and Gatsonis HSROC methods (10.5.3.3) can be used for comparisons of test accuracy when there is
variability in threshold between studies. The type of test is represented by a binary covariate that is
used to identify the test that gave rise to each 2x2 table included in the analysis. This covariate then
allows the reviewer to investigate whether test type is associated with the shape and position of the
summary ROC curve. Interpretation of the results follows directly from the discussion of the
interpretation of investigations of heterogeneity in 10.5.3.

Statistically, estimation of the variances of the random effects for threshold and accuracy is subject
to a higher level of uncertainty than for the main model parameters of interest. If preliminary plots
of the study level estimates of sensitivity and specificity in ROC space show marked differences in
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heterogeneity between studies for the two tests, it is advisable to assess whether the assumption of
equal variances of the random effects for the two tests is reasonable. This is usually done by
comparing the fit of the alternative models (i.e. where variances do, or do not, depend on the
covariate for test type). A comparison of the main estimates of interest between the alternative
models is also useful to assess whether conclusions about the relative shape and accuracy of the
summary curves for the two tests are robust to assumptions about the variances of the random
effects. Again, such an investigation will not be feasible if the number of studies is small.

As noted for the Bivariate model, it is usual for most of the included studies to have evaluated only
one of the tests, but some studies will have evaluated both. If the proportion of studies that have
evaluated both is very small, then treating the results of the two tests in a study as if they were
obtained from different studies is unlikely to affect the results. However, more accurate standard
errors will be obtained for the test comparison parameters if the data for both tests are modelled
within the study at level one of the analysis. A binary covariate for test type must be included to
identify which 2x2 table corresponds to each test.

10.5.4.5 Test comparison based on studies that directly compare tests

As noted earlier, heterogeneity in the estimated accuracy of a diagnostic test across studies is likely
to occur. This could confound the comparison of two tests if different studies are used to estimate
the diagnostic accuracy of each test. Ideally, the comparison should be based on studies that have
made a direct comparison of the tests of interest by either applying both tests to each individual, or
by randomizing each individual to receive one of the tests. A common reference standard should be
applied to both tests. If there are sufficient studies of this type on which to base a test comparison,
the results are less prone to bias than an analysis based on all available studies that have evaluated
one or both tests.

A preliminary graphical analysis can be conducted in RevMan by plotting the estimated sensitivity
and specificity for both tests, for each study in ROC space. The two points contributed by each study
(one for each test) are joined by a line to highlight the relative test accuracy within each study (see
10.3.2). This figure illustrates the pairing of test accuracy estimates at the study level.

The rationale described above for choosing between the Bivariate model and the HSROC model
when making test comparisons is also applicable here, and the same points relating to interpretation
apply. The only major difference is that the analysis does not include any studies that have evaluated
only one of the tests.

Because each study contributes a 2x2 table for each of the two tests to be compared, the data for
the two tests must be analysed within study at level one of the analysis, and a binary covariate for
test type included to identify which 2x2 table corresponds to each test. Entering a separate 2x2
table for each test (within each study) for analysis in a hierarchical model effectively assumes that
the data arise from a randomized design. This represents a conservative approach that is often
necessitated by the lack of information on paired results at the individual level for truly ‘paired’
studies that have applied both tests to the same individual.

Meta-analytical models that account for pairing of test results within an individual in studies which
have used a paired study design are not commonly used, and require further development and
testing before they are implemented in a Cochrane review. Such an extension would also require
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that researchers publish a cross classification of test results within both the diseased and non-
diseased groups. This is not common practice at present.

10.5.4.6 Example 3 (cont.): CT versus MRI for the diagnosis of coronary artery disease

The meta-analysis by Schuetz also included 5 studies that made a direct comparison of CT and MRI.
Basing the analysis on these 5 studies (ten 2x2 tables) has the advantage that the results should be
less prone to bias. However, the number of studies in the analysis is dramatically reduced which
reduces the precision of the summary estimates. As we will see in this example, simplifying
assumptions may also be required to fit complex Hierarchical models to these data. We will again
apply the Bivariate model for these data.

i Sensitivity

—  The ROC scatter plot shows the data for the 5
vl G_Qﬁ paired studies, with black used to denote CT and
08t red used to denote MRI. A line is used to join

g the results for CT and MRI within each study.
Examining this plot, we can see that sensitivity
for CT is lower than for MRl in one study,
equivalent in one study, and higher in the other
three studies. Specificity is higher for CT than
for MRI in 3 studies and lower in the other 2.

Fitting a model to these data is difficult,
particularly for the Bivariate model where

om0 o5 o 0soor o1 9 convergence is more problematic than for the

Legend

A Rutter and Gatsonis model (see 10.5.6).

A preliminary series of models were fitted to assess whether random effects should be included for
both sensitivity and specificity (this model did not include the covariate for test type ). The model
that included random effects only for specificity gave a -2Log likelihood of 106.4, a better fit than the
model that assumed a fixed effect for both sensitivity and specificity (-2Log likelihood 114.8). The
model that assumed random effects only for sensitivity provided no improvement to the fit
compared with the fixed effect model. Hence, the covariate for test type was added to the model
with random effects for specificity only. The SAS output for this model is shown below.

Fit Statistics

-2 Log Likelihood 89.6
AIC (smaller is better) 99.6
AICC (smaller is better) 103.9
BIC (smaller is better) 97.6
Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t] Alpha Lower Upper Gradient
msens .8083 0.2412 4 7.50 0.0017 0.05 1.1385 2.4781 ©.000011
mspec §.8910 0.3606 4 2.47 0.0689 0.05 -0.1101 1.8921 1.197E-6
s2uspec €.4239 0. 374% 4 1.13 0.3208 0.05 -0.6156 1.4634 -1.35E-7
se_CT 1.9051 0.4195 4 2.40 0.0747 0.05 -0.1596 2.1698 -6.32E-6
sp_CT 0.9378 0.2955 4 3.17 0.0337 0.05 0.1175 1.7581 3.672E-6
Covariance Matrix of Parameter Estimates
Row Parameter msens mspec s2uspec se_CT sp_CT
1 msens 0.05820 -7E-12 -131E-13 -0.05820 -147E-14
2 mspec 0.1300 -0.01214 1.13E-11 -0.03387
3 s2uspec -135 0.01214 0.1402 2.43E-11 0.003983
4 se_CT -0.05820 1.13E-11 2.43E-11 0.1760 9.95E-12
5 sp_CT -147E-14 -9.03387 0.003983 9.95E-12 0.08729

Additional Estimates
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Standard

Label Estimate Error DF t value Pr > [t] Alpha Lower Upper
logitsens CT 2.8134 0.3432 4 8.20 0.0012 0.05 1.8606 3.7663
logitspec CT 1§.8287 0.3867 4 4.73 0.0091 0.05 0.7550 2.9025

Covariance Matrix of Additional Estimates
Row Label Covil Cov2

1 logitsens CT 0.1]178 1.2BE-11

2 logitspec CT 1.28E1496
The layout and interpretation of the output follow that for the indirect test comparison example
discussed earlier, with the red indicating MRI results and blue CT. Note that the estimated

covariance between msens and mspec is equivalent to zero. The green box shows the estimated
variance of the random effects for specificity.

i Sensitivity

These estimates were input to RevMan to
superimpose summary estimates and their
confidence regions on the ROC scatterplot. A
zero value was entered for the variance of the

061 - — random effects for sensitivity.

Inverse logit transformation of the estimates
and their lower and upper 95% confidence limits

1 gives estimated sensitivities of 0.86 (95%Cl 0.76,
T 0.92) for MRl and 0.94 (95% CI 0.87, 0.98) for CT;
ot and estimated specificities of 0.71 (95%Cl 0.47,
0.87) for MRI and 0.86 (95%Cl 0.68, 0.95) for CT.
DEETWQ . . . . B‘mm”w‘ These estimates are consistent with the previous
<R

analysis which showed that CT had higher
sensitivity and specificity than MRI.

The confidence regions shown on the figure are wider than would be indicated by the confidence
intervals given above. The confidence regions computed by RevMan appear to be overly
conservative when the number of studies is small. This issue will investigated and modifications
made to later versions of the software if required.

The t-statistics in the output above provide only weak evidence of a difference in sensitivity
(P=0.075 for parameter se_CT) and evidence of a difference in specificity (P=0.034 for parameter
sp_CT). The P-values based on changes in the -2Log likelihood are lower (0.012 and 0.0011
respectively), indicating stronger evidence for these effects. Given the small number of studies in
this analysis and the resulting difficulty in checking model assumptions regarding the distributions of
the random effects, it may be advisable to take a conservative approach. The key inference here is
that the results of this analysis are consistent with the conclusions of the earlier indirect comparison
which was based on all available studies that evaluated at least one of the index tests.

10.5.5 Computer software

Both of the hierarchical models we have focused on can be fitted using a range of statistical
packages. WinBUGS (or its recent open-source version OpenBUGS) provides a flexible Bayesian
framework for model fitting. It can be used to fit both the Bivariate and HSROC models. To obtain
the parameters needed to create confidence and prediction regions for the RevMan SROC plots
requires estimates of the standard errors, which need to be generated from the posterior
distributions.
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Many analysts find fitting the models using standard commonly used software packages such as SAS,
Stata and MLwiN more straightforward.

The Bivariate model can be fitted using software that can fit a generalized linear mixed model.
Commonly used routines are Proc NLMIXED (or Proc GLIMMIX) in SAS, xtmelogit (or the user
written package glamm) in Stata. All of these programs assume that the random effects are
normally distributed. WinBUGS can allow alternative distributions for the random effects if that is
deemed necessary. A user written command metandi is available in Stata to fit a model without
covariates (Harbord 2009), and a macro METADAS written in SAS which includes models with and
without covariates (Takwoingi 2008). Both macros neatly tabulate output required for populating
the plotting functions in RevMan.

The parameterization for the Rutter and Gatsonis model represents a generalized non- linear mixed
model. If covariates are to be included and tested in the model, then the range of available software
is more limited because of the non-linear form of the model if the shape parameter is included in the
model. This model is usually fitted using Proc NLMIXED in SAS (Macaskill 2004). The SAS METADAS
macro also fits HSROC models with and without covariates. The Stata metandi command can be
used to fit the Rutter and Gatsonis HSROC model without covariates. However, it should be noted
that it does this by exploiting the mathematical equivalence between the Bivariate and HSROC
models when there are no covariates in the model. Hence, it is applicable when an overall HSROC
curve is to be fitted to a group of studies but does not allow inclusion of covariates.

RevMan can use the parameter estimates from one or other model to estimate: a summary curve;
summary operating point; a confidence region and prediction region for the summary point.
However, the review author needs to be clear which of these summary measures are appropriate for
their analysis.

10.5.6 Approaches to analysis with small numbers of studies

When the number of studies is small it may be difficult to decide on which terms should be included
in a model, and which is the ‘best’ model. For instance, when fitting a summary ROC curve, the
uncertainty associated with the estimation of the shape parameter could be very high, and the
estimate may also be strongly influenced by the inclusion/exclusion of individual studies. For both
the Bivariate and HSROC models, estimates of the variances of the random effects will be subject to
a high level of uncertainty.

It is important to keep in mind that estimation of a single summary point using the Bivariate model,
or estimation of a single summary curve using the HSROC model, requires five parameters to be
estimated in the full model specification. There is little information on which to base these
estimates when the number of studies is small, so analysts must take this into account when
interpreting the results. In some situations models may fail to converge.

It is not possible to give hard and fast rules about how to proceed when dealing with small numbers
of studies. However, some strategies are outlined here which may help in some situations.
Ultimately, judgement must be exercised regarding whether a model is sufficiently reliable to report.

Failure of a model to converge may be symptomatic of several problems:
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e |nsome cases, it may be due to poor choices of starting values for the parameter estimates. If
so, it may help to fit the model first assuming a fixed effect for the model parameters, and then
use these as the starting values for the random effects model.

e For small data sets, convergence may also be affected by the inclusion/removal of individual
studies. The effect of such influential studies should be investigated.

e Convergence problems can also arise when the variance of one of the random effects is close to
zero. This is particularly an issue for the Bivariate model parameterisation, where an
examination of the scatter plot may help to identify strong heterogeneity in sensitivity but
homogeneity in specificity, or vice versa. Restricting the model to have random effects for one
parameter, and a fixed effect for the other may then be warranted. This particular problem can
also occur when the number of studies is relatively large.

e The standard error for the shape parameter in the HSROC model may be large. It would be
advisable to check how much the shape is influenced by the removal of individual studies. When
the shape is uncertain and also very dependent on individual studies, then some analysts may
choose to assume symmetry for the summary curve to acknowledge that the shape cannot be
estimated reliably. Again, this needs to be reported and discussed in the report of the analyses.

10.6 Special topics

10.6.1 Sensitivity analysis

The process of undertaking a systematic review involves a sequence of decisions. Whilst many of
these decisions are clearly objective and non-contentious, some will be somewhat arbitrary or
unclear. For instance, if inclusion criteria involve a numerical value, the choice of value is usually
arbitrary: for example, defining groups of older people may reasonably have lower limits of 60, 65,
70 or 75 years, or any value in between. Other decisions may be unclear because a study fails to
include the required information. Further decisions are unclear because there is no consensus of
the best method to use for a particular problem, such as defining a reference standard or analysing
missing data or intermediate test results.

It is desirable to demonstrate that the findings from a systematic review are not dependent on such
arbitrary or unclear decisions. A sensitivity analysis is a repeat of the primary analysis or meta-
analysis, substituting alternative decisions of ranges of values for decisions that were arbitrary or
unclear. For example, if the eligibility of some studies in the meta-analysis is dubious because they
do not contain full details, sensitivity analysis may involve undertaking the meta-analysis twice: first
including all studies, and second, only including those that are definitely known to be eligible. A
sensitivity analysis asks the question “Are the findings robust to the decisions made in the process of
obtaining and analysing them?”. A sensitivity analysis is not the same as a subgroup analysis where
the purpose is to investigate how study design and patient characteristics are associated with test
accuracy. The aim in the subgroup analysis is to explore and explain heterogeneity in test accuracy.

There are many decision nodes within the systematic review process which can generate a need for
sensitivity analysis. Examples include:

Searching for studies:
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0 Should abstracts whose results cannot be confirmed in subsequent publications be included in
the review?

Eligibility criteria

0 Characteristics of participants: where a majority but not all people in a study meet the required
presentation or demographic, should the study be included?

0 Characteristics of tests: what versions of a test technology should be included? What threshold
definition constitutes a common threshold?

0 Characteristics of the reference standard: where there are variations on information used in a
clinical opinion based reference standard, should they all be included? Where the reference
standard involves follow-up, what lengths of follow-up are considered adequate?

0 Study methods: should only fully uniformly verified studies be included? Should unblinded
studies be included? Should case-control studies be included? Or should inclusion be restricted
by any other methodological criteria?

What data should be analysed?

0 How should uninterpretable test results be handled in the analysis? Should they be classified as
test negatives or excluded?

0 How should missing data be handled in the analysis?

Analysis methods

0 Should a common or symmetric shape for an ROC curve be presumed across subgroups or tests?
0 Can equal variances be presumed for all tests in a comparison?

Reporting of sensitivity analyses in a systematic way may best be done by producing a summary
table. Some sensitivity analyses can be pre-specified in the study protocol, but many issues suitable
for sensitivity analysis are only identified during the review process where the individual peculiarities
of the studies under investigation are identified. Where sensitivity analysis show the overall result
and conclusions are not affected by the different decisions made during the review process, the
results of the review can be regarded with a higher degree of certainty. Where sensitivity analyses
identify particular decisions or missing information that greatly influence the findings of the review,
greater resources can be deployed to try and resolve uncertainties and obtain extra information,
possibly through contacting study authors. If this cannot be achieved, the results must be
interpreted with an appropriate degree of caution. Such findings may generate proposals for further
investigations and future research.

Sensitivity analysis may be sometimes confused with subgroup analysis. Although some sensitivity
analysis may involve restricting the analysis to a subset of the totality of the studies, the two
methods differ in two ways. First sensitivity analyses do not attempt to estimate the effect of the
covariate in the group of studies removed from the analysis, whereas in subgroup analysis estimates
are produced for all groups. Second, in sensitivity analysis informal comparisons are made between
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different ways of estimating the same thing, whereas in subgroup analysis formal statistical
comparisons are made across the subgroups.

10.6.2 Investigating and handling verification bias.

An examination of the potential for verification bias in a systematic review would ordinarily be part
of the assessment of study quality. If verification bias is present, corrections would need to be
implemented within individual studies, before proceeding to the meta-analysis. The literature on
methods for correcting verification bias in individual studies is by now extensive. For example, the
analyst may want to consult Chapter 10 in Zhou et al (Zhou 2002) and Chapter 7 in Pepe (Pepe
2003). It may also be useful to investigate the presence of verification bias as a source of
heterogeneity among studies. Issues arise in the extraction of study data when adjustments have
been made for verification bias, as described in the Chapter 8.

10.6.3 Investigating and handling publication bias

Systematic reviewers must undertake comprehensive searches to attempt to locate all relevant
studies. If the studies included in the review have results that differ systematically from relevant
studies that are missed, estimates derived from the meta-analysis will be affected by publication
bias (Begg 1994a).

Although there is substantial literature relating to publication bias in systematic reviews of
randomized controlled trials, little research has been done in the context of systematic reviews of
diagnostic studies. However, it is clear that the determinants of publication bias for reviews of RCTs
(Dickersin 1990), (loannidis 1998) are unlikely to be generalizable to reviews of diagnostic studies.
For instance, when considering diagnostic test accuracy, statistical significance is not particularly
relevant as few studies formulate and test hypotheses. Another difference is the likely relationship
between study size and methodological quality. Whereas large RCTs require large-scale funding and
are on average conducted and analysed with greater methodological rigour than small RCTs, large
diagnostic studies may be no more than an analysis of a large laboratory database of routinely-
collected data.

Statistical tests detect funnel plot asymmetry in general rather than publication bias specifically (see
section 10.4 of the Cochrane Handbook for Systematic Reviews of Interventions). Tests for funnel
plot asymmetry designed primarily for use in randomized trials, including the Egger (Egger 1997),
Begg (Begg 1994b), Harbord (Harbord 2006) and Peters (Peters 2006) tests, should not be used with
diagnostic studies. It is well established that the accuracy of such tests for funnel plot asymmetry is
reasonable if the odds ratio is close to 1 (as occurs in many randomized trials), but deteriorates as
the odds ratio moves away from 1 (Macaskill 2001), (Schwarzer 2002). For diagnostic studies, the
odds ratio is expected to be large. Applying such tests for funnel plot asymmetry in systematic
reviews of diagnostic test accuracy is likely to result in publication bias being incorrectly indicated by
the test far too often (a Type | error rate that is too high) (Deeks 2005).

A more appropriate method for detecting funnel plot asymmetry in reviews of diagnostic studies has
been developed (Deeks 2005). It tests for association between the INDOR and the ‘effective sample
size’, a simple function of the number of diseased and non-diseased individuals. A simulation study
has shown that the test has modest power for detecting funnel plot asymmetry. However, when
there is heterogeneity in the DOR, even this test has low power, as do all tests for funnel plot
asymmetry.
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Since heterogeneity in test accuracy is to be expected in many diagnostic reviews, review authors
are warned against interpreting statistical evidence of funnel plot asymmetry as necessarily implying
publication bias. Study size may be related to test accuracy for reasons other than publication bias.
Exploration of heterogeneity in test accuracy should be undertaken, as patient and study
characteristics may be associated with study size as well as test accuracy (Deeks 2005). Further
research is required to improve our understanding of the determinants and extent of publication
bias for diagnostic studies.

10.6.4 Developments in meta-analysis for DTA reviews

This chapter reflects the currently established methods for meta-analysis of diagnostic test accuracy.
Methodological developments occur often in this field, and the methods used in Cochrane DTA
reviews are sure to develop over time to extend the scope of the models and data structures which
can be included. As new methods are shown to be robust and of importance, and software made
available for their implementation, they will be included in updates of this chapter.

Of particular interest are analytical methods being developed to include data from multiple
thresholds for each study, which allow both more accurate estimation of summary ROC curves and
estimates of average sensitivity and specificity values at stated thresholds, but these require further
evaluation before they will be incorporated in Cochrane reviews (Dukic 2003), (Hamza 2009).
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Appendix

The programs listed below are in SAS, but the results can be reproduced using other software. The
export facility in RevMan5 was used to create a .csv file which contained the 2x2 tables for each
study included in each review. The .csv file can be read by Excel and can also be imported into
statistical programs such as SAS for further analysis. (Note: additional columns of data that are not
relevant to our analyses are not shown). Files are available from the Cochrane DTA website
(srdta.cochrane.org).

Data and SAS file for Example 1- Anti-CCP for the diagnosis of rheumatoid arthritis
Data (nashimura CCP.csv)

Test study_id CCP generation tp fp fn tn method of measurement
Anti-CCP Aotsuka 2005 CCP2 115 17 16 73
Anti-CCP Bas 2003 CCP1 110 24 86 215
Anti-CCP Bizzaro 2001 CCcpP1 40 5 58 227
Anti-CCP Bombardieri 2004 CCP2 23 0 7 39
Anti-CCP Choi 2005 CCP2 236 20 88 231
Anti-CCP Correa 2004 CccpP2 74 11 8 130
Anti-CCP De Rycke 2004 CCP2 89 4 29 142
Anti-CCP Dubucquoi 2004 CCP2 90 2 50 129
Anti-CCP Fernandez-Suarez 2005 CCP2 31 0 22 75
Anti-CCP Garcia-Berrocal 2005 CCP2 69 8 18 38
Anti-CCP Girelli 2004 CCP2 25 2 10 40
Anti-CCP Goldbach-Mansky 2000 CCP1 43 1 63 120
Anti-CCP Greiner 2005 CcCcpP2 70 5 17 228
Anti-CCP Grootenboer-Mignot 2004 CCP2 167 8 98 88
Anti-CCP Hitchon 2004 CCP2 26 8 15 15
Anti-CCP Jansen 2003 CCpP1 110 3 148 118
Anti-CCP Kamali 2005 CcCcpP2 26 1 20 56
Anti-CCP Kumagai 2004 CCP2 64 14 15 293
Anti-CCP Kwok 2005 CCP2 71 2 58 66
Anti-CCP Lee and Schur 2003 CccpP2 68 14 35 132
Anti-CCP Lopez-Hoyos 2004 CCP2 38 3 0 73
Anti-CCP Nell 2005 CCP2 42 2 60 96
Anti-CCP Nielen 2005 CCP2 149 7 109 114
Anti-CCP Quinn 2006 CCP2 147 10 35 106
Anti-CCP Rantapaa-Dahlqvist 2003 CCP2 47 7 20 375
Anti-CCP Raza 2005 CCP2 24 3 18 79
Anti-CCP Saraux 2003 CccpP1 40 11 46 146
Anti-CCP Sauerland 2005 CCP2 171 26 60 443
Anti-CCP Schellekens 1998 CCP1 72 14 77 298
Anti-CCP Soderlin 2004 CccpP2 7 2 9 51
Anti-CCP Suzuki 2003 CCP2 481 23 68 185
Anti-CCP Vallbracht 2004 CCP2 190 12 105 408
Anti-CCP van Gaalen 2005 CCP2 82 13 71 301
Anti-CCP van Venrooij 2004 CccpP2 865 79 252 2218
Anti-CCP Vincent 2002 CCP1 139 7 101 464
Anti-CCP Vittecoq 2004 CCP2 69 5 107 133
Anti-CCP Zeng 2003 CccpP1 90 7 101 313

48 |Page



SAS Program (nishimura CCP.sas):

/* Import data */
proc import out=nishimura
datafile="C:\chapterl@\nishimura CCP.csv"'
dbms=csv replace;
getnames=yes;
run;

data nishimura_accp;

set nishimura;

where test='Anti-CCP';
run;

/* Create a two separate records for the true results in each study,
the first for the diseased group, and the second for the non-diseased group.
The variable sens is an indicator which takes the value 1 if true=true positives and @ otherwise,
the variable spec is also an indicator that takes the value 1 if true =true negatives and © otherwise */
data nishimura_accp;
set nishimura_accp;
sens=1; spec=0; true=tp; n=tp+fn; output;
sens=0; spec=1; true=tn; n=tn+fp; output;
run;

/* Ensure that both records for a study are clustered together */
proc sort data=nishimura_accp;

by study_id ;

run;

/* Run the Bivariate model with no covariates
The "cov" option requests that a covariance matrix is printed for
all model parameter estimates. The "ecov" option requests a covariance matrix
for all additional estimates that are computed. */

proc nlmixed data=nishimura_accp cov ecov ;

/* specify starting values for all parameters to be estimated
and ensure that the variances of the random effects cannot be negative */

parms msens=1 to 2 by 0.5 mspec=2 to 4 by 0.5 s2usens=0.2 s2uspec=0.6 covsesp=0;
bounds s2usens>=0;
bounds s2uspec>=0;
logitp = (msens + usens)*sens + (mspec + uspec)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);

/* usens and uspec represent the random effects. The are both assumed to be
normally distributed with mean zero. Their variances estimates are s2usens and s2uspec,
and their covariance estimate is covesp */

random usens uspec ~ normal([@ , ©],[s2usens,covsesp,s2uspec])
subject=study_id out=randeffs;

/* Additional estimates that are functions of the model parameters can be estimted here:
e.g the positive and negative likelihood ratios */

estimate 'logLR+' log((exp(msens)/(1+exp(msens)))/(1-(exp(mspec)/(1l+exp(mspec)))));

estimate 'logLR-' log((1-(exp(msens)/(1l+exp(msens))))/(exp(mspec)/(1+exp(mspec))))

>

run;

/* Check assumption of normality for the random effects */
proc univariate data=randeffs plot normal;

class effect;

var estimate;
run;

/* Create a dummy variable for CCP generation, coded as © for 'CCP1' (the referent generation)
and coded as 1 for 'CCP2'. This new variable is added to the dataset set created above. */

data nishimura_accp;

set nishimura_accp;

ccpg=0;

if ccp_generation ="CCP2" then ccpg=1;
run;

/* add the covariate CCPG to the model to allow both sensitivity and specificity to be
associated with generation of the test */

proc nlmixed data=nishimura_accp cov ecov;
parms msens=1 mspec=2 s2usens=0.2 s2uspec=0.6 covsesp=0 se2=0 sp2=0;
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bounds s2usens>=0;

bounds s2uspec>=0;
logitp=(msens+usens+se2*ccpg)*sens+(mspec+uspec+sp2*ccpg)*spec;
p = exp(logitp)/(1+exp(logitp));

model true ~ binomial(n,p);

random usens uspec ~ normal([@ , @], [s2usens,covsesp,s2uspec])
subject=study_id out=randeffs;

/* Estimate logit(sensitivity) and logit(specificity) for CCP2
(their correlation will be output because of the "ecov" option for nlmixed),
and also log likelihood ratios for CCP1 and CCP2 */

estimate 'logitsens CCP2' msens + se2;

estimate 'logitspec CCP2' mspec + sp2;

estimate 'logLR+ CCP1' log((exp(msens)/(1l+exp(msens)))/(1-(exp(mspec)/(1+exp(mspec)))));

estimate 'logLR- CCP1' log((1l-(exp(msens)/(1+exp(msens))))/(exp(mspec)/(1l+exp(mspec))));

estimate 'logLR+ CCP2' log((exp(msens+se2)/(1+exp(msens+se2)))/(1-(exp(mspec+sp2)/(1+exp(mspec+sp2))
estimate 'logLR- CCP2' log((1l-(exp(msens+se2)/(1+exp(msens+se2))))/(exp(mspec+sp2)/(1l+exp(mspec+sp2)
run;

)5
)5

/* Check assumption of normality for the random effects */
proc univariate data=randeffs plot normal;

class effect;

var estimate;
run;
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Data and SAS file for Example 2 - Rheumatoid Factor as a marker for Rheumatoid

Arthritis.

Data (nishimura RF.csv)

test
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF

study_id

Young 1991

Nell 2005

Quinn 2006

Bizzaro 2001
Bombardieri 2004

Das 2004
Fernandez-Suarez 2005
Girelli 2004
Goldbach-Mansky 2000
Greiner 2005
Grootenboer-Mignot 2004
Hitchon 2004

Jansen 2003

Kwok 2005
Lopez-Hoyos 2004
Sauerland 2005
Spiritus 2004

Suzuki 2003

Swedler 1997

Aho 1999

Anuradha and Chopra 2005
Berthelot 1995

Choi 2005

Cordonnier 1996

De Rycke 2004

Despres 1994

Kamali 2005

Lee and Schur 2003
Raza 2005

Saraux 1995

Soderlin 2004
Thammanichanond 2005
Vittecoq 2001

Winkles 1989

Banchuin 1992

Bas 2003

Carpenter and Bartkowiak 1989
Davis and Stein 1989
de Bois 1996
Dubucquoi 2004
Gomes-Daudrix 1994
Jonsson 1998
Rantapaa-Dahlqvist 2003
Saraux 2003
Schellekens 2000
Vallbracht 2004

van Leeuwen 1988
Vasiliauskiene 2001
Visser 1996

Vittecoq 2004
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25
56
115
61
27
42
30
32
70
75
64
32
130
77
36
161
57
383
89
64
482
80
261
20
93
143
20
73
22
8

5
57
26
113
36
143
60
18
8
84
48
50
49
35
80
196
163
75
157
62

fp

25

19

43

41

14
23

28
75
10
21

11

14
46
67
37

14
23

36
12
29

128
52

33
166

27
82
39
63
29
25
63
26
29
20
31
11

32
29
41
53
20
31

56
40
20
28
51
69
99
28
21

114

tn

20
87
63

196
33
127
73
13
93
191
73
13
113
52
70
360
93
170
39
153
153
45
197
18
118
130
25
90
80
91
49
111
29
481
313
196
119
25
31
90
99
191
359
149
284
345
140
106
1466
127

method of measurement
Rheumatoid arthritis hemagglutination
Not reported
Not reported
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
Nephelometry
LA

LA

LA

ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA
ELISA



SAS Program (nishimura RF.sas):

/* Import data */
proc import out=nishimura
datafile="C:\chapterl@\nishimura RF.csv’
dbms=csv
replace;
getnames=yes;
run;

/* select only studies that have evaluated RF */
data nishimura_RF;

set nishimura;

where test='RF';
run;

proc print;

run;

data nishimura_RF;
set nishimura_RF;

/* Create separate records for the diseased and
The variable dis is the disease indicator which takes the value 0.5 if diseased

and -0.5 if not diseased. */

dis=0.5; pos=tp; n=tp+fn; output;

dis=-0.5; pos=fp; n=tn+fp; output;
run;

/* Ensure that both records for a study are clustered together

proc sort data=nishimura_RF;
by study_id dis;
run;

/* Run the Rutter and Gatsonis HSROC model with no covariates.
request covariance matrices for model parameters ("cov") and
also for additional estimates that are computed ("ecov") */

proc nlmixed data=nishimura_RF ecov cov ;

/* set starting values for all model parameters to be estimated */
parms alpha=2 theta=0 beta=0 s2ua=0 s2ut=0 ;

logitp = (theta + ut + (alpha + ua)*dis) * exp(-(beta)*dis);

p = exp(logitp)/(1+exp(logitp));

model pos ~ binomial(n,p);

/* the random effects for accuracy (ua) and threshold (ut) are assumed to be
approximately normally distributed, both with mean zero and with variances
s2ua and s2ut respectively. The covariance of the random effects is set to ©.

random ut ua ~ normal([0,0],[s2ut,0,s2ua]) subject=study_id out=randeffs;

run;

/* Create two dummy variables for to allow for the three RF measurement methods.

LA is the referent method

Delete the 2 studies that did not report the method, and the study that used

a different method. */

data nishimura_RF;
set nishimura_RF;

non-diseased groups in

*/

if method_of_measurement ne "ELISA" and method_of_measurement ne "Nephelometry" and

method_of_measurement ne "LA" then delete;

rfml=0; rfm2=0; ;

if method_of_measurement ="ELISA" then rfml=1;

if method_of_measurement ="Nephelometry"
run;

/* Ensure that both records for a study are clustered together */

proc sort data=nishimura_RF;
by study_id dis;
run;

/* include covariates to allow accuracy, threshold and shape to vary by method */

proc nlmixed data=nishimura_RF ecov cov ;

parms alpha=2 theta=0 beta=0 s2ua=1 s2ut=1 al=0 a2=0 t1=0 t2=0 bl=0 b2=0 ;
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logitp = (theta + ut + tl*rfml + t2*rfm2 + (alpha + ua + al*rfml + a2*rfm2)*dis)*
exp(-(beta + bl*rfml + b2*rfm2)*dis);

p = exp(logitp)/(1+exp(logitp));
model pos ~ binomial(n,p);
random ut ua ~ normal([0,0],[s2ut,0,s2ua]) subject=study_id out=randeffs;

/* parameter estimates for the methods of RF measurement; */
estimate 'alpha ELISA' alpha + al;
estimate 'theta ELISA' theta + t1;
estimate 'beta ELISA' beta + bl;
estimate 'alpha Nephelometry' alpha + a2;
estimate 'theta Nephelometry' theta + t2;
estimate 'beta Nephelometry' beta + b2;
run;

/* simplify the model to assume that all three curves have the same shape */
proc nlmixed data=nishimura_RF ecov cov ;
parms alpha=2 theta=0 beta=0 s2ua=1 s2ut=1 al=0 a2=0 t1=0 t2=0 ;

logitp = (theta + ut + tl*rfml + t2*rfm2 + (alpha + ua + al*rfml + a2*rfm2)*dis)*
exp(-(beta)*dis);

p = exp(logitp)/(1+exp(logitp));
model pos ~ binomial(n,p);
random ut ua ~ normal([@,0],[s2ut,0,s2ua]) subject=study_id out=randeffs;
/* parameter estimates for the methods of RF measurement; */
estimate 'alpha ELISA' alpha + al;
estimate 'theta ELISA' theta + t1;
estimate 'alpha Nephelometry' alpha + a2;
estimate 'theta Nephelometry' theta + t2;
run;
/* check assumption of normality for random effects */
proc univariate data=randeffs plot normal;
class effect;
var estimate;
run;
/* this model assumes that all three curves have the same shape and position.
The position is the same because there are no covariates included for accuracy.
Comparison with the previous model allows us to test whether accuracy varies by method. */
proc nlmixed data=nishimura_RF ecov cov ;

parms alpha=2 theta=0 beta=0 s2ua=1 s2ut=1 t1=0 t2=0 ;

logitp = (theta + ut + tl*rfml + t2*rfm2 + (alpha + ua)*dis)*
exp(-(beta)*dis);

p = exp(logitp)/(1+exp(logitp));
model pos ~ binomial(n,p);
random ut ua ~ normal([0,0],[s2ut,0,s2ua]) subject=study_id out=randeffs;

run;

/* check assumption of normality for random effects */
proc univariate data=randeffs plot normal;

class effect;

var estimate;

run;
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Data and SAS file for Example 3 - CT versus MRI for the diagnosis of coronary artery disease
Data (schuetz.csv)

Test Study_ID tp fp fn tn Indirect
CcT Achenbach 2005 25 4 0 19 1
CcT Alkadhi 2008 57 12 2 79 1
CcT Andreini 2007 17 0 0 44 1
CcT Bayrak 2008 64 4 0 32 1
MRI Bedaux 2002 7 1 0 1 1
MRI Bogaert 2003 12 3 3 1 1
cT Bonmassari 2006 12 2 0 8 1
CcT Brodoefel 2008 73 5 0 22 1
CcT Budoff 2008 52 30 3 142 1
CcT Cademartiri 2007 20 1 0 51 1
CcT Carrascosa 2007 13 1 1 5 1
MRI Cheng 2006 21 0 4 3 1
CcT Chow 2007 18 0 1 7 1
CcT Coles 2007 77 13 7 16 1
CcT Cornily 2007 9 1 0 23 1
CcT Davin 2007 42 4 12 30 1
CcT Deetjen 2007 31 3 2 26 1
CcT Dewey 2006 62 5 4 46 0
MRI Dewey 2006 42 2 7 39 0
CcT Dewey 2009 11 1 0 17 1
CcT Ehara 2006 59 1 1 6 1
CcT Erdogan 2006 33 2 3 5 1
CcT Garcia 2006 58 58 1 70 1
CcT Gaudio 2008 16 1 48 1
MRI Gerber 2005 17 1 2 6 1
CcT Ghersin 2006 29 11 6 13 1
CcT Ghostine 2006 28 2 1 35 1
CcT Gilard 2006 11 9 0 35 1
CcT Grosse 2007 29 0 1 10 1
MRI Hackenbroch 2004 18 5 4 13 1
CcT Hacker 2007 19 1 1 9 1
CcT Halon 2007 72 10 13 16 1
CcT Hausleiter 2007 101 35 1 106 1
CcT Henneman 2006 12 1 1 6 1
CcT Henneman 2008 28 0 0 12 1
CcT Herzog 2007a 19 6 0 30 1
CcT Herzog 2007b 16 1 0 23 1
CcT Herzog 2008 18 2 0 10 1
CcT Hoffmann 2004 19 3 2 9 1
CcT Hoffmann 2005 43 2 2 28 1
MRI Ichikawa 2007 11 8 6 33 1
MRI lkonen 2003 42 15 5 7 1
CcT Johnson 2007 17 2 0 16 1
CcT Kaiser 2005 97 18 16 18 1
CcT Kefer 2005 32 6 2 12 0
MRI Kefer 2005 30 9 4 9 0
MRI Kim 2001 56 25 4 18 1
MRI Klein 2008 20 11 2 13 1
CcT Kolnes 2006 33 8 1 8 1
CcT Laissy 2007 11 2 2 25 1
CcT Langer 2009 25 2 1 40 0
MRI Langer 2009 18 15 8 27 0
CcT Leber 2007 20 7 1 60 1
CcT Leschka 2005 47 0 0 20 1
CcT Leschka 2008a 69 8 2 35 1
CcT Leschka 2008b 35 5 1 33 1
CcT Maintz 2007 15 2 1 2 0
MRI Maintz 2007 15 1 1 3 0
CcT Manghat 2007 3 0 0 12 1
CcT Marano 2008 179 17 12 119 1
CcT Martuscelli 2004 43 9 0 9 1
CcT Maruyama 2008 75 5 2 65 1
MRI McCarthy 2007 13 6 2 8 1
CcT Meijboom 2006 18 4 0 48 1
CcT Meijboom 2007 88 4 0 12 1
CcT Meijboom 2008 244 41 2 73 1
CcT Miller 2007 139 13 24 115 1
CcT Mir-Akbari 2009 41 11 10 20 1
CcT Mollet 2004 106 3 0 18 1
CcT Mollet 2005b 31 3 0 17 1
CcT Mollet 2005a 38 1 0 12 1
CcT Moon 2005 30 2 5 21 1
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SAS Program (scheutz.sas)

proc import out=schuetz
datafile="C:\chapterl@\schuetz.csv'
dbms=csv
replace;
getnames=yes;
run;

/* Create two separate records for the true results in each study,
the first for the diseased group, and the second for the non-diseased group.
The variable sens is an indicator which takes the value 1 if true=true positives and © otherwise,
the variable spec is also an indicator that takes the value 1 if true =true negatives and @ otherwise */
data schuetz;
set schuetz;
testtype=0;
if test ="CT" then testtype=1;
sens=1; spec=0; true=tp; n=tp+fn; output;
sens=0; spec=1; true=tn; n=tn+fp; output;
run;

/* Ensure that both records for a study are clustered together */
proc sort data=schuetz;

by study_id test;
run;

/* Run the Bivariate model with no covariates
The "cov" option requests that a covariance matrix is printed for
all model parameter estimates. The "ecov" option requests a covariance matrix
for all additional estimates that are computed. */
proc nlmixed data=schuetz cov ecov;
parms msens=2 mspec=1 s2usens=0 s2uspec=0 covsesp=0 ;
logitp=(msens+usens)*sens+(mspec+uspec)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);
random usens uspec ~ normal([@,0],[s2usens,covsesp,s2uspec]) subject=study_id out=randeffs;
run;
/* Bivariate model with test as a covariate using the indicator variable testtype.
MRI is the reference category.
Variances of the random effects are assumed not to vary by test type. */
proc nlmixed data=schuetz cov ecov;
parms msens=2 mspec=1 s2usens=0 s2uspec=0 covsesp=0 se_CT=1 sp_CT=0;
logitp=(msens+usens+se_CT*testtype)*sens+(mspec+uspec+sp_CT*testtype)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);
random usens uspec ~ normal([0,0],[s2usens,covsesp,s2uspec]) subject=study_id out=randeffs;
/* Estimate logit(sensitivity), and logit(specificity) */
estimate 'logitsens CT' msens + se_CT;
estimate 'logitspec CT' mspec + sp_CT;
run;
/* Check assumption of normality for the random effects */
proc univariate data=randeffs plot normal;
class effect;
var estimate;
run;

/* Bivariate model with effect of test type on only sensitivity */

proc nlmixed data=schuetz cov ecov;
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parms msens=2 mspec=1 s2usens=0 s2uspec=0 covsesp=0 se_CT=1 ;
logitp=(msens+usens+se_CT*testtype)*sens+(mspec+uspec)*spec;

p = exp(logitp)/(1+exp(logitp));

model true ~ binomial(n,p);

random usens uspec ~ normal([0,0],[s2usens,covsesp,s2uspec]) subject=study_id out=randeffs;

run;

/* Bivariate model with effect of test type on only specificity */
proc nlmixed data=schuetz cov ecov;
parms msens=2 mspec=1 s2usens=0 s2uspec=0 covsesp=0 sp_CT=0;
logitp=(msens+usens)*sens+(mspec+uspec+sp_CT*testtype)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);
random usens uspec ~ normal([@,0],[s2usens,covsesp,s2uspec]) subject=study_id out=randeffs;

run;

/* DIRECT COMPARISONS */
/* Create new dataset of studies with within-study comparison of CT and MRI.
"indirect" is a binary variable in the dataset coded 1 if the study evaluated
only one test (CT or MRI) and @ if both tests were evaluated in a study */
data schuetz_direct;

set schuetz;

where indirect=9;
run;

/* Fit Bivariate model without covariate */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;
parms msens=2 mspec=1 s2usens=0 s2uspec=0 covsesp=0 ;

bounds s2usens>=0;
bounds s2uspec>=0;

logitp=(msens+usens)*sens+(mspec+uspec)*spec;

p = exp(logitp)/(1+exp(logitp));

model true ~ binomial(n,p);

random usens uspec ~ normal([0,0],[s2usens,covsesp,s2uspec]) subject=study_id out=randeffs;
run;

/* Fit Bivariate model with fixed effects */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;

parms msens=2 mspec=1;
logitp=(msens)*sens+(mspec)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);
run;
/* Fit Bivariate model with random effect for specificity only */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;
parms msens=2 mspec=1 s2uspec=0;
logitp=(msens)*sens+(mspec+uspec)*spec;
p = exp(logitp)/(1+exp(logitp));

model true ~ binomial(n,p);
random uspec ~ normal([@],[s2uspec]) subject=study_id out=randeffs;
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run;
/* Fit Bivariate model with random effect for sensitivity only */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;
parms msens=2 mspec=1 s2usens=0;
logitp=(msens+usens)*sens+(mspec)*spec;

p = exp(logitp)/(1+exp(logitp));

model true ~ binomial(n,p);
random usens ~ normal([@],[s2usens]) subject=study_id out=randeffs;

run;
/* Fit Bivariate model with covariate for test type on both sens and spec.
Random effects only for specificity */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;
parms msens=2 mspec=1 s2uspec=0 se_CT=0 sp_CT=0;
bounds s2uspec>=0;
logitp=(msens+se_CT*testtype)*sens+(mspec+uspec+sp_CT*testtype)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);
random uspec ~ normal([@],[s2uspec]) subject=study_id out=randeffs;
/* Estimate logit(sensitivity) and logit(specificity) */
estimate 'logitsens CT' msens + se_CT;
estimate 'logitspec CT' mspec + sp_CT;
run;
/* Fit Bivariate model with covariate for test type on specificity.
Random effects only for specificity */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;
parms msens=2 mspec=1 s2uspec=0 sp_CT=0;
bounds s2uspec>=0;
logitp=(msens)*sens+(mspec+uspec+sp_CT*testtype)*spec;
p = exp(logitp)/(1+exp(logitp));
model true ~ binomial(n,p);
random uspec ~ normal([@],[s2uspec]) subject=study_id out=randeffs;
run;
/* Fit Bivariate model with covariate for test type on sensitivity.
Random effects only for specificity */
proc nlmixed data=schuetz_direct cov ecov gpoints=10;
parms msens=2 mspec=1 s2uspec=0 se_(T=0;
bounds s2uspec>=0;
logitp=(msens+se_CT*testtype)*sens+(mspec+uspec)*spec;
p = exp(logitp)/(1+exp(logitp));

model true ~ binomial(n,p);

random uspec ~ normal([@],[s2uspec]) subject=study_id out=randeffs;

run;
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