

The empirical distribution of τ from IQWiG reports for the application in Bayesian random-effects meta-analyses

Ralf Bender,
Matthias Maiworm, Sibylle Sturtz
(IQWiG, Germany)

Outline

- Introduction
 - Meta-analysis with very few studies
 - Example
 - Bayesian methods
- Methods
 - Suggestions for prior distributions
 - Meta-analyses from IQWiG reports
- Results
- Interim conclusion
- Outlook
- References

Introduction

Situation

- Fixed-effect (FE) model
 - Assumption: No true heterogeneity
 - Frequently not adequate
- Random-effects (RE) model
 - Assumption: True heterogeneity (not too large)
 - Knapp-Hartung (KH) method recommended (Veroniki et al., 2019)
 - Problem: In the case of very few (2-4) studies τ cannot be estimated reliably (Bender et al., 2018)

KH method is over-conservative in the case of very few studies

Currently we apply FEM or a qualitative evidence synthesis, but this is circumstantial ...

Example

Belatacept after kidney transplant (2 significant studies)

- Belatacept vs Ciclosporin A for prophylaxis of graft rejection in adults receiving a renal transplant (IQWiG report A15-25)
- Endpoint "renal insufficiency in chronic kidney disease stage 4/5"

Figure 1 Belatacept vs. Ciclosporin A Renal insufficiency in chronic kidney disease

Study	log(HR)	SE	HR	(95% CI)	weight (DSL)	HR	95% CI
BENEFIT	-0.82	0.17	-		44.6	0.44	[0.32, 0.61]
BENEFIT-EXT	-0.51	0.13	-	-	55.4		[0.46, 0.78]
DSL			•		100.0	0.52	[0.39, 0.71]
CE IV			•			0.53	[0.43, 0.65]
KH						0.52	[0.07, 3.71]
B-HN(0.5)				I		0.53	[0.27, 0.98]
B-HN(1.0)						0.52	[0.17, 1.52]
		0	.01 0.10	1.00 10.00	100.00		
			favors Belatacept	favors Ciclospor	rin A		

Heterogeneity: Q=2.06, df=1, p=0.151, I²=51.5% Overall effect: Z Score=-4.21, p<0.001, Tau=0.157

- Knapp-Hartung is over-conservative
 Decision of no significant overall effect is critical

Example

Belatacept after kidney transplant (2 significant studies)

- Belatacept vs Ciclosporin A for prophylaxis of graft rejection in adults receiving a renal transplant (IQWiG report A15-25)
- Endpoint "renal insufficiency in chronic kidney disease stage 4/5"

Figure 1 Belatacept vs. Ciclosporin A Renal insufficiency in chronic kidney disease

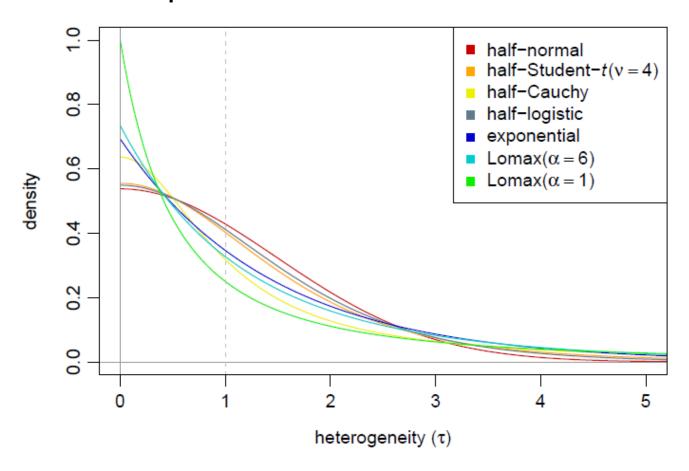
Study	log(HR)	SE	HR (95%	6 CI)	weight (DSL)	HR	95% CI
BENEFIT	-0.82	0.17	-		44.6	0.44	[0.32, 0.61]
BENEFIT-EXT	-0.51	0.13	-		55.4	0.60	[0.46, 0.78]
DSL			•		100.0	0.52	[0.39, 0.71]
CE IV			•			0.53	[0.43, 0.65]
KH						0.52	[0.07, 3.71]
B-HN(0.5)						0.53	[0.27, 0.98]
B-HN(1.0)				-		0.52	[0.17, 1.52]
		0.01	0.10 1.00	10.00 100.00			
			favors Belatacept	favors Ciclosporin A			

Heterogeneity: Q=2.06, df=1, p=0.151, I²=51.5% Overall effect: Z Score=-4.21, p<0.001, Tau=0.157

- Bayesian approach = Compromise between DSL and KH But the final result depends on the prior distribution

Prior distributions

- Random-effects meta-analysis:

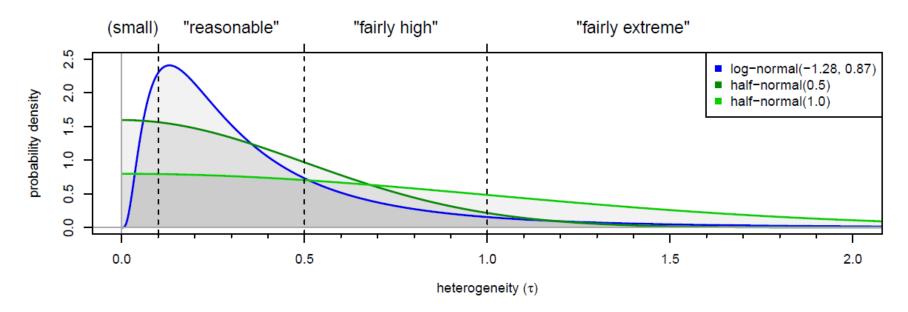

$$y_i = \theta_i + \varepsilon_i, \ \theta_i = \theta_{RE} + \delta_i$$

$$\varepsilon_i \sim N(0, v_i), \ \delta_i \sim N(0, \tau^2), \ Var(y_i) = v_i + \tau^2$$

- $P((\theta_{RE}, \tau^2) | data) \propto P((\theta_{RE}, \tau^2)) \times P(data | (\theta_{RE}, \tau^2))$
- For overall mean effect θ_{RE} : Non-informative prior
- For heterogeneity parameter τ: Weakly informative prior to overcome limitations in the case of few studies (Friede et al., 2017; Röver et al., 2021)

Prior distributions

Potential prior distributions for τ:



See Röver et al. (2021)

Prior distributions

 For pragmatic reasons we concentrate at first on half-normal distribution (Röver et al., 2021)

Comparison of HN(0.5) and HN(1.0) with the lognormal distribution proposed by **Turner et al.** (2015)

Which distribution is suitable in the HTA framework?

Methods

- Collection of all meta-analyses of IQWiG reports from 2005 to June 2020
- Random-effects meta-analysis by means of Knapp-Hartung (IQWiG, 2020)
- Estimation of τ by means of Paule-Mandel
- Conditions:
 - No meta-analyses for sensitivity/specificity
 - No subgroup analyses
 - No sensitivity analyses
 - Fourfold table available: Calculation of OR and RR
- Histograms to illustrate the empirical distribution of τ
- Comparison with HN(0.5) and HN(1.0)

- Data basis:
 - 653 IQWiG reports
 - 118 reports with meta-analyses (forest plot)
 - 1653 meta-analyses
- Effect measures: OR, RR, SMD, (HR)
- In more than 75% of meta-analyses the number of studies is smaller than 5!
- Restrictions:
 - Only estimates of τ larger than zero
 - Only meta-analyses without substantial heterogeneity (Q-test not significant)

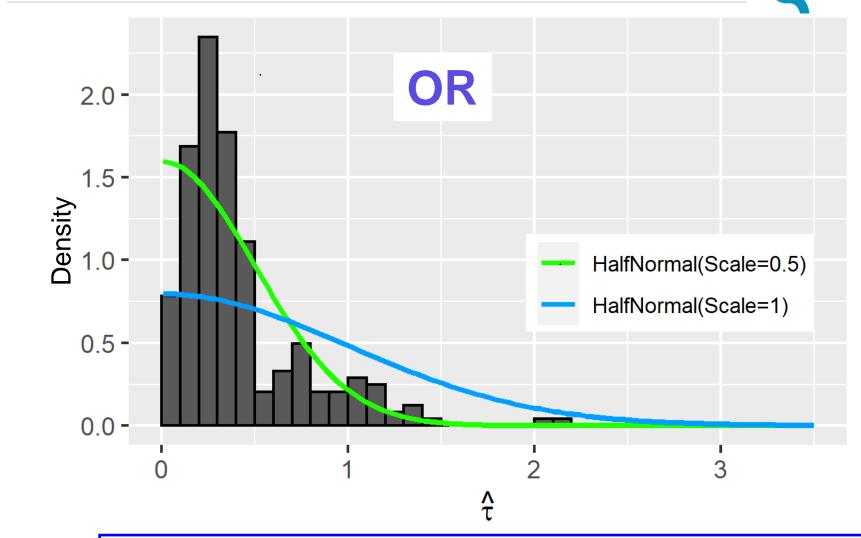
Problem:

In about 60% of meta-analyses zero estimates for τ are obtained (similar to others).

Further restriction:

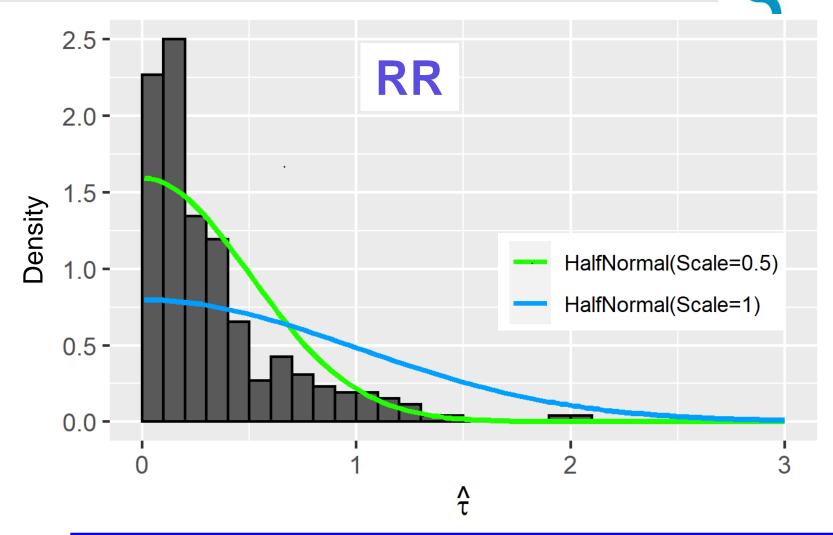
It makes sense to include only meta-analyses where heterogeneity is not too large for a meaningful pooled effect estimation.

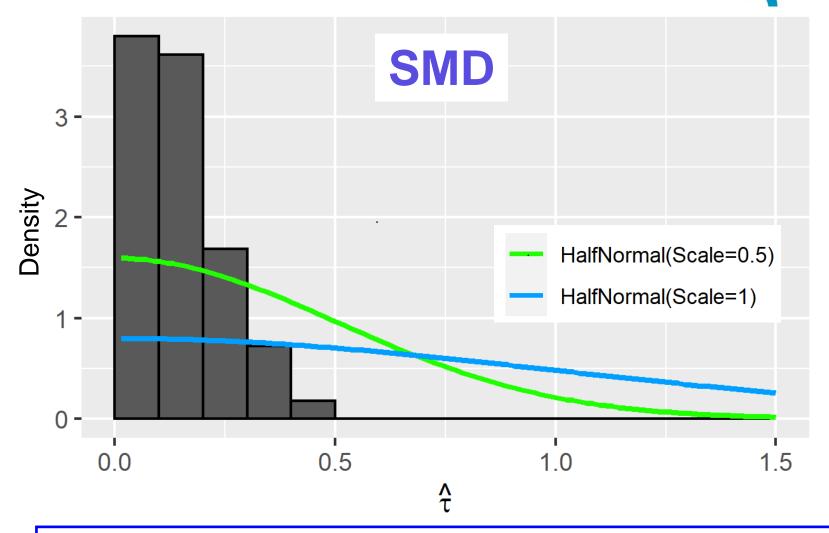
Number of meta-analyses with non-zero estimates for τ and no substantial heterogeneity:


OR: **243** meta-analyses

RR: **260** meta-analyses

SMD: 166 meta-analyses


(HR: 21 meta-analyses)


HN(0.5) distribution seems to be suitable for OR

HN(0.5) distribution seems to be suitable for RR

Distribution with smaller scale than **HN(0.5)** for SMD?

Interim conclusion

- First results are promising
- HN(0.5) seems to be suitable for OR and RR (and HR)
- For SMD a distribution with smaller scale parameter seems to be possible
- Pragmatic approach:
 Use of the same prior distribution for all effect measures, e.g., HN(0.5)

Outlook

- Application of various prior distributions (e.g., HN(0.5), HN(1.0), lognormal, Cauchy) to the IQWiG database of meta-analyses
- Key question:
 Can the use of qualitative evidence synthesis be avoided by means of Bayesian meta-analysis?
- If possible, decision for a suitable standard prior distribution (together with experts from biometric societies in Germany)
- Application of Bayesian meta-analyses with the chosen standard prior distribution for τ in the case of very few studies in the future

References

- Bender, R. et al. (2018): Methods for evidence synthesis in the case of very few studies. Res. Syn. Methods 9, 382–392.
- Friede, T. et al. (2017): Meta-analysis of few small studies in orphan diseases. Res. Syn. Methods 8, 79-91.
- IQWiG (2020): General Methods, Version 6.0 of 5 November 2020.
 Institute for Quality and Efficiency in Health Care, Cologne.
- Röver, C. et al. (2021): On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. Res. Syn. Methods 12 (in press).
- Turner, R.M. et al. (2015): Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat. Med. 34, 984-998.
- Veroniki, A.A. et al. (2019): Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis. Res. Syn. Methods 10, 23-43.