

Webinar, 26.01.2023

Performing Meta-Analyses in the Case of Very Few Studies

Ralf Bender IQWiG, Cologne, Germany

Outline

Introduction

- Models
- Estimation methods
- Qualitative summary of study results
- Meta-analysis with very few studies
 - Problems, examples
 - Qualitative summary of study results
 - Procedure, examples
- Discussion
- Outlook
 - Beta-binomial Model
 - Bayesian meta-analysis
- Summary
- Conclusion
- References

Poll 1: Continent Poll 2: Affiliation

Topic for today:

Meta-analyses with very few studies

tau^2 PM: 0.000

Methods for evidence synthesis in the case of very few studies

Res Syn Meth. 2018;9:382-392.

Performing Meta-analyses with Very Few Studies

Anke Schulz, Christoph Schürmann, Guido Skipka, and Ralf Bender

In: Evangelou, E. & Veroniki, A.A., Eds.: *Meta-Research: Methods and Protocols*, pp. 91-102. Humana, New York (2022)

Introduction

2 main meta-analytic models:

- Model with fixed effect (FEM)
 - Assumption:
 - All studies estimate the same effect
 - Better term: "Common-effect model"
- Model with random effects (REM)
 - Assumption:
 - The studies estimate different effects
 - For illustrating heterogeneity:
 Prediction intervals (PIs) are useful
- <u>Note:</u> There are more models and approaches for meta-analysis. However, in practice, these do not play a major role (see Bender et al., *RSM* 2018).

Meta-analysis: FEM

- $y_i = \theta_{FE} + \varepsilon_i$, $\varepsilon_i \sim N(0, v_i)$, $Var(y_i) = v_i$
- Assumption: All studies estimate the same effect.
- Parameter of interest: **Fixed effect** θ_{FE}

From: Borenstein et al. (2010): *RSM* 1, 97-111.

Meta-analysis: REM

- $y_i = \theta_i + \varepsilon_i$, $\theta_i = \theta_{RE} + \delta_i$, $\varepsilon_i \sim N(0, v_i)$, $\delta_i \sim N(0, \tau^2)$, $Var(y_i) = v_i + \tau^2$
- Assumption: Each study estimates a study-specific true effect.
- Parameter of interest: **Expected value** θ_{RE} of the effects

From: Borenstein et al. (2010): *RSM* 1, 97-111.

REM: Prediction interval

- Confidence interval (CI):
 - 95%-CI: $\hat{\theta}_{RE} \pm t_{k-1,1-\frac{\alpha}{2}} \times SE(\hat{\theta}_{RE})$
 - Range, which includes with high certainty (95%) the true effect of the meta-analysis
- Prediction interval (PI):

• 95%-PI:
$$\hat{\theta}_{RE} \pm t_{k-1,1-\frac{\alpha}{2}} \times \sqrt{\tau^2 + Var(\hat{\theta}_{RE})}$$

- Range, which includes with high certainty (95%) the true effect of a single study
- Graphical illustration of heterogeneity in the REM

FEM: Inverse variance (IV)

Continuous data: Method of inverse variance (IV)

• Point estimate: $\hat{\theta}_{FE} = \frac{\sum_{i=1}^{k} y_i w_{i,FE}}{\sum_{i=1}^{k} w_{i,FE}}$, with $w_{i,FE} = 1/\hat{v}_i$

• 95% CI: $\hat{\theta}_{FE} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{1}{\sum_{i=1}^{k} w_{i,FE}}}$, z_q : q-quantile of the normal distribution

FEM: Mantel-Haenszel (MH)

- Binary data: Mantel-Haenszel (MH) method
- Estimation performed by means of the fourfold tables (dependent on effect measure)

REM: DerSimonian & Laird (DSL)

 Historically, the standard approach for RE meta-analysis: DSL method (DerSimonian & Laird, CCT 1986)

• Point estimation: $\hat{\theta}_{RE} = \frac{\sum_{i=1}^{k} y_i w_{i,RE}}{\sum_{i=1}^{k} w_{i,RE}}$ with $w_{i,RE} = 1/(\hat{v}_i + \hat{\tau}^2)$

• Point estimation of τ by means of the method of moments

• 95% CI: $\hat{\theta}_{RE} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{1}{\sum_{i=1}^{k} w_{i,RE}}}$, z_q : *q*-quantile of normal distribution

- DSL has been criticized for some time (Cornell et al., AIM 2014)
- DSL ignores the uncertainty of variance estimations
- Cls are frequently too narrow (in the case of few studies)

REM: Hartung-Knapp-Sidik-Jonkman (HKSJ)

- Recommended by the Cochrane Collaboration: HKSJ method (Veroniki et al., RSM 2019)
- Estimation: $\hat{\theta}_{RE} = \frac{\sum_{i=1}^{k} y_i w_{i,RE}}{\sum_{i=1}^{k} w_{i,RE}}$ with $w_{i,RE} = 1/(\hat{v}_i + \hat{\tau}^2)$
- Estimation of τ by means of Paule-Mandel method

• 95% CI:
$$\hat{\theta}_{RE} \pm \left(t_{k-1,1-\frac{\alpha}{2}}\right) \sqrt{\frac{\sum_{i=1}^{k} w_{i,RE}(y_i - \hat{\theta}_{RE})^2}{(k-1)\sum_{i=1}^{k} w_{i,RE}}}$$
, $t_{m,q}$: q-quantile of t-distribution

- HKSJ holds type 1 error
- Cls frequently very wide (especially in the case of few studies)
- $z_{0.975} = 1.96$, $t_{1;0.975} = 12.7$, $t_{2;0.975} = 4.3$, $t_{3;0.975} = 3.2$, $t_{4;0.975} = 2.8$

REM: Hartung-Knapp-Sidik-Jonkman (HKSJ)

Problems in homogeneous data situations

• 95% CI:
$$\hat{\theta}_{RE} \pm t_{k-1,1-\frac{\alpha}{2}} \sqrt{\frac{\sum_{i=1}^{k} w_{i,RE}(y_i - \hat{\theta}_{RE})^2}{(k-1)\sum_{i=1}^{k} w_{i,RE}}}$$

- SE may be arbitrarily too small and CI too narrow
- Ad-hoc variance correction (Knapp & Hartung, Stat. Med. 2003)

•
$$Var(\hat{\theta}_{RE}) = max \left[\frac{1}{\sum_{i=1}^{k} w_{i,RE}}, \frac{\sum_{i=1}^{k} w_{i,RE}(y_i - \hat{\theta}_{RE})^2}{(k-1)\sum_{i=1}^{k} w_{i,RE}} \right]$$

 Procedure required for the decision whether the ad-hoc variance correction (VC) should be used or not

Qualitative summary of results

Concept of conclusive effects (IQWiG, 2022):

- Data situation, in which an effect can be derived although a meaningful pooled effect estimation is not possible
- No pooled effect estimation when:
 - Heterogeneity is too large
 - Data are insufficient to apply the desired model (REM)

Qualitative summary of results

Concept of conclusive effects (IQWiG, 2022):

- 2 or more estimates are in the same direction
 - Total weight of these studies $\ge 80\%$
 - $o \ge 2$ studies are statistically significant
 - Weight of significant studies $\geq 50\%$
- Moderately and clearly conclusive effects
 - 2 or 3 studies significant \Rightarrow clearly
 - 2 studies significant, 1 study n.s. \Rightarrow moderately
 - Conclusive situation with 4 studies: all 4 studies significant ⇒ clearly Null ∉ prediction interval ⇒ clearly Null ∈ prediction interval ⇒ moderately

Example 1: Clear data situation

Intervention vs. Kontrolle Endpunkt X Modell mit festem Effekt - Mantel-Haenszel

	Intervention	Kontrolle								
Studie	n/N	n/N			RR (95%-KI)			Gewichtung	RR	95%-KI
Studie 1	70/100	90/100			_			13.8	0.78	[0.67, 0.90]
Studie 2	25/50	32/50		•				4.9	0.78	[0.55, 1.10]
Studie 3	100/150	130/150						19.9	0.77	[0.68, 0.88]
Studie 4	110/160	140/160			-			21.5	0.79	[0.70, 0.89]
Studie 5	130/180	160/180			_			24.5	0.81	[0.73, 0.90]
Studie 6	80/110	100/110			_			15.3	0.80	[0.70, 0.91]
Gesamt	515/750	652/750		+				100.0	0.79	[0.75, 0.83]
			1	1			1			
			0.50	0.71	1.00	1. 41	2.00			
			li	ntervention bes	ser Kor	ntrolle besser				
	E 0.004 13 004									

Heterogenität: Q=0.54, df=5, p=0.991, l²=0% Gesamteffekt: Z-Score=-8.37, p<0.001

\Rightarrow Proof of an intervention effect

Example 2: Less clear data situation

Intervention vs. Kontrolle

Endpunkt X

Modell mit festem Effekt - Mantel-Haenszel

	Intervention	Kontrolle								
Studie	n/N	n/N			RR (95%-KI)			Gewichtung	RR	95%-KI
Studie 1	65/90	80/90			<u> </u>			21.4	0.81	[0.70, 0.94]
Studie 2	25/40	30/40						8.0	0.83	[0.62, 1.12]
Studie 3	65/80	70/80		-				18.7	0.93	[0.81, 1.06]
Studie 4	20/25	19/25		_				5.1	1.05	[0.78, 1.41]
Studie 5	60/130	75/130						20.1	0.80	[0.63, 1.01]
Studie 6	80/130	100/130						26.7	0.80	[0.68, 0.94]
Gesamt	315/495	374/495						100.0	0.84	[0.78, 0.91]
			I	I						
			0.50 I	0.71 ntervention be	1.00 sser Ko	1. 41 ntrolle besser	2.00			

Heterogenität: Q=5.02, df=5, p=0.413, l²=0.4% Gesamteffekt: Z-Score=-4.17, p<0.001

Poll 3: Significant effect?

Example 2: Less clear data situation

Intervention vs. Kontrolle

Endpunkt X

Modell mit festem Effekt - Mantel-Haenszel

	Intervention	Kontrolle				
Studie	n/N	n/N	RR (95%-KI)	Gewichtung	RR	95%-KI
Studie 1	65/90	80/90		21.4	0.81	[0.70, 0.94]
Studie 2	25/40	30/40		8.0	0.83	[0.62, 1.12]
Studie 3	65/80	70/80		18.7	0.93	[0.81, 1.06]
Studie 4	20/25	19/25		5.1	1.05	[0.78, 1.41]
Studie 5	60/130	75/130	_	20.1	0.80	[0.63, 1.01]
Studie 6	80/130	100/130	_	26.7	0.80	[0.68, 0.94]
Gesamt	315/495	374/495	◆	100.0	0.84	[0.78, 0.91]
			0.50 0.71 1.00 1.41 2.00			
			Intervention besser Kontrolle besser			

Heterogenität: Q=5.02, df=5, p=0.413, l²=0.4% Gesamteffekt: Z-Score=-4.17, p<0.001

\Rightarrow Proof of an intervention effect

Example 3: Unclear data situation

Intervention vs. Kontrolle

Endpunkt X

Modell mit festem Effekt - Mantel-Haenszel

	Intervention	Kontrolle				
Studie	n/N	n/N	RR (95%-KI)	Gewichtung	RR	95%-KI
Studie 1	70/90	75/90		22.1	0.93	[0.81, 1.08]
Studie 2	28/40	30/40		8.8	0.93	[0.71, 1.22]
Studie 3	32/50	35/50	_	10.3	0.91	[0.69, 1.20]
Studie 4	45/80	40/80		11.8	1.13	[0.84, 1.51]
Studie 5	65/100	70/100		20.6	0.93	[0.77, 1.13]
Studie 6	77/100	90/100		26.5	0.86	[0.75, 0.97]
Gesamt	317/460	340/460	-	100.0	0.93	[0.86, 1.01]
			0.50 0.71 1.00 1.41 2.00			
			Intervention besser Kontrolle besser			

Heterogenität: Q=3.41, df=5, p=0.637, l²=0% Gesamteffekt: Z-Score=-1.72, p=0.086

Poll 4: Significant effect?

Example 3: Unclear data situation

Intervention vs. Kontrolle

Endpunkt X

Modell mit festem Effekt - Mantel-Haenszel

	Intervention	Kontrolle								
Studie	n/N	n/N			RR (95%-KI)			Gewichtung	RR	95%-KI
Studie 1	70/90	75/90		_				22.1	0.93	[0.81, 1.08]
Studie 2	28/40	30/40				- 2		8.8	0.93	[0.71, 1.22]
Studie 3	32/50	35/50			-			10.3	0.91	[0.69, 1.20]
Studie 4	45/80	40/80						11.8	1.13	[0.84, 1.51]
Studie 5	65/100	70/100						20.6	0.93	[0.77, 1.13]
Studie 6	77/100	90/100			-			26.5	0.86	[0.75, 0.97]
Gesamt	317/460	340/460			-			100.0	0.93	[0.86, 1.01]
			1	1						
			0.50	0.71 Intervention bes	1.00 sser Kon	1. 41 trolle besser	2.00			

Heterogenität: Q=3.41, df=5, p=0.637, I²=0% Gesamteffekt: Z-Score=-1.72, p=0.086

\Rightarrow No proof of an intervention effect

Example 4: REM in clear data situation

Intervention vs. Kontrolle

Endpunkt X

Modell mit zufälligen Effekten - Knapp und Hartung

	Intervention	Kontrolle							
Studie	n/N	n/N		RR (95	5%-KI)		Gewichtung	RR	95%-KI
Studie 1	70/100	90/100		_			15.9	0.78	[0.67, 0.90]
Studie 2	30/40	32/40					7.3	0.94	[0.74, 1.19]
Studie 3	100/150	130/150		_			18.3	0.77	[0.68, 0.88]
Studie 4	95/160	140/160					16.4	0.68	[0.59, 0.78]
Studie 5	130/180	160/180		—			23.7	0.81	[0.73, 0.90]
Studie 6	80/110	100/110					18.4	0.80	[0.70, 0.91]
Gesamt	505/740	652/740		-			100.0	0.78	[0.71, 0.86]
95% Prädiktionsintervall									[0.67, 0.91]
			1	1	1	1			
			0.50	0.71 1.0 Intervention besser	00 1.41 Kontrolle besser	2.00			

Heterogenität: Q=6.95, df=5, p=0.224, I²=28.1% Gesamteffekt: Z-Score=-7.01, p<0.001, Tau(Paule-Mandel)=0.049

\Rightarrow Proof of an intervention effect

Example 5: REM in less clear data situation

Intervention vs. Kontrolle

Endpunkt X

Modell mit zufälligen Effekten - Knapp und Hartung

	Intervention	Kontrolle				
Studie	n/N n/		RR (95%-KI)	Gewichtung	RR	95%-KI
Studie 1	60/90	80/90		21.3	0.75	[0.64, 0.88]
Studie 2	25/40	30/40		10,1	0.83	[0.62, 1.12]
Studie 3	65/80	70/80		25.1	0.93	[0.81, 1.06]
Studie 4	20/25	17/25		8.6	1.18	[0.84, 1.64]
Studie 5	60/130	75/130		14.0	0.80	[0.63, 1.01]
Studie 6	80/130	100/130	_	21.0	0.80	[0.68, 0.94]
Gesamt	310/495	372/495		100.0	0.85	[0.74, 0.98]
95% Prädiktionsintervall						[0.65, 1.11]
			0.50 0.71 1.00 1.41 Intervention besser Kontrolle besser	2.00		

Heterogenität: Q=8.58, df=5, p=0.127, I²=41.7% Gesamteffekt: Z-Score=-2.90, p=0.034, Tau(Paule-Mandel)=0.088

Provided there is sufficient certainty of the study results, the pooled effect estimate indicates **proof of an intervention effect** (on average!). However, due to beterogeneity, study situations can be expected, in which

However, due to heterogeneity, study situations can be expected, in which the intervention has no effect.

Example 6: Clearly conclusive effects

Intervention vs. Kontrolle

Endpunkt X

Modell mit zufälligen Effekten - Knapp und Hartung (zur Darstellung der Gewichte)

Provided there is sufficient certainty of the study results, the clearly conclusive effects indicate **proof of an intervention effect** (but with an unclear effect size).

Example 7: Moderately conclusive effects

The decision, whether the intervention is beneficial depends on the certainty of the study results.

(RCTs with low risk of bias or non-RCTs with high or unclear risk of bias?)

Example 8: No conclusive effects

Intervention vs. Kontrolle

Endpunkt X

Modell mit zufälligen Effekten - Knapp und Hartung (zur Darstellung der Gewichte)

Heterogenität: Q=107.73, df=5, p<0.001, l2=95.4%

\Rightarrow No proof of an intervention effect

Very few studies (k<5)

Problems with meta-analyses with very few studies (Bender et al., 2018):

- Choice between FEM and REM difficult
- τ cannot be adequately estimated
- DSL-CIs are too narrow
- HKSJ-CIs are wide or even non-informative
- In homogeneous data situations HKSJ-CIs are sometimes too narrow

Example: IQWiG Report A15-25

Belatacept after kidney transplant (2 significant studies)

- Belatacept vs ciclosporin A for prophylaxis of graft rejection in adults receiving a renal transplant
- Endpoint "renal insufficiency in chronic kidney disease stage 4/5"

belatacept vs. ciclosporin A renal insufficiency in chronic kidney disease

Atterogeneity: Q=2.06, dt=1, p=0.151, t²=51.5% Overall effect: Z Score=-4.21, p<0.001, Tau=0.157

Example: IQWiG Report A14-38

Sipuleucel-T in prostate cancer (3 significant studies)

Sipuleucel-T vs appropriate comparator for asymptomatic or minimally symptomatic metastatic prostate cancer in males
Endpoint fever

sipuleucel-I vs. comparator fever

Overall effect: Z Score=3.15, p=0.002, Tau=0.388

Artificial examples

Ad-hoc variance correction (VC) for HKSJ

tau^2 PM: 0.000

HKSJ over-conservative Ad-hoc VC not required

Artificial examples

Ad-hoc variance correction (VC) for HKSJ

iau² 7 IVI. 0.000

HKSJ CI-width decreases with increasing homogeneity Is the use of ad-hoc VC required?

Artificial examples

Ad-hoc variance correction (VC) for HKSJ

tau^2 PM: 0.000

Procedure in the case of very few studies IQWiG

• Step 1: Preliminary model choice

- PICOS framework
- In general: RE model
- 2 studies: FE model (studies with identical design)

Step 2: Evaluation of heterogeneity

- Too large, unexplained heterogeneity: MA not useful
 Q-Test, l², visual inspection of forest plot
- If this is the case: Qualitative summary (QS)

Step 3: Final model and method choice

- Strong heterogeneity: Reconsider preliminary choice
- FE model: IV (continuous) or MH (binary)
- RE model: HKSJ (if required VC) or QS (comparison with DSL and comparison with QS)

Example: IQWiG Report N16-02

Use of ad-hoc VC required? O Comparison of CIs from DSL and HKSJ O HKSJ-CI narrower than DSL-CI ⇒ Use VC

Telemonitoring vs. Control Mortality

Heterogeneity: Q=0.07, df=2, p=0.965, I²=0% Overall effect (REM - HKSJ): Z Score=-8.66, p=0.013, Tau(Paule-Mandel)=0

Example: IQWiG Report N16-03

Is HKSJ informative? Significance of HKSJ vs DSL?
 O HKSJ-CI wider than the union of study CIs?
 O HKSJ informative, but n.s., DSL stat. sign. ⇒ QS

Overall effect (REM - HKSJ): Z Score=-3.96, p=0.058, Tau(Paule-Mandel)=0.107

$QS \Rightarrow$ Benefit of the intervention (but effect size is unclear)

Example: IQWiG Report N19-01

Is HKSJ informative? Significance of HKSJ vs DSL? O HKSJ-CI wider than the union of study CIs? O HKSJ informative, but n.s., DSL n.s. ⇒ HKSJ & DSL

Overall effect (REM - HKSJ): Z Score=-1.68, p=0.192, Tau(Paule-Mandel)=0.318

HKSJ & DSL \Rightarrow No proof of an effect

Telemedicine vs. Control

Discussion

- No satisfactory standard method is currently available to perform meta-analyses in the case of very few studies
- FEM possible in practice, but has limitations
- Therefore, in general, the REM should be used (unless there are clear reasons to justify the use of the FEM)
- Problem: In the case of very few studies, REM frequently has low power and does not yield informative results
- In the case of only 2 studies, the FEM should be used (despite of the general recommendation) unless there are clear reasons against the use of the FEM
- Reason: In situations with only 1 single study, results of this study are interpreted and conclusions are made (in principle, application of the FEM)

Discussion

- In the case of 3-4 studies: REM should be used (unless there are clear reasons to justify the use of the FEM)
- Use of HKSJ (with checks regarding VC and whether the result is informative)
- Application of HKSJ or HKSJ-VC or QS
- For QS:
 - Concept of conclusive effects
 - O Prediction intervals
- Other promising possibilities:
 - Beta-binomial model (Felsch et al., *BMC-MRM* 2022)
 - Bayesian meta-analysis with informative prior for τ (Röver et al., RSM 2021; Lilienthal et al., work in progress)

Outlook

Beta-binomial model (BBM)

- Suitable for binary data
- Simulation study by IQWiG in collaboration with Tim Mathes (Göttingen) and Oliver Kuß (Düsseldorf)
- Results (Felsch et al., *BMC-MRM* 2022):
 - No advantages in the case of 2 studies
 - More power than HKSJ in the case of 3-4 studies

Consideration of inclusion of the BBM in the procedure described before

Outlook

Bayesian meta-analysis

- Required: Slightly informative prior for τ
- Good compromise between DSL und HKSJ
- IQWiG-project in collaboration with Tim Friede and Christian Röver (Göttingen):
 - Derivation of empirical priors for τ from meta-analyses of IQWiG reports (see "A Day with ... SMG" 11.05.2021: https://training.cochrane.org/learning-events/learning-live/day/day-smg)
 - Currently: Estimation of empirical priors for τ by means of the hierarchical Bayes model according to Röver et al. (Stat. Med. 2023, under review)
 - Manuscript in preparation with suggestion of priors for τ for the effect measures RR, OR, HR, SMD (suitable for HTA) (Lilienthal et al., 2023, work in progress)

Summary

Evidence synthesis in the case of very few studies:

- Too large, unexplained heterogeneity: QS
- 2 studies: Standard model FEM (IV or MH)
- 3-4 studies:
 - **REM** with HKSJ or HKSJ-VC (if HKSJ yields useful information)
 - **QS** (if HKSJ yields no useful information or when DSL stat. sign.)
- 5 studies or more: REM with HKSJ or HKSJ-VC
 Future: BBM and Bayes (with informative prior for τ)

Conclusion

- No satisfactory universal standard method is currently available to perform meta-analyses in the case of very few studies
- Additional approaches (beta-binomial model, Bayes) are under consideration
- The procedure currently used by IQWiG (combination of FEM, REM, QS) represents a feasible approach to perform evidence syntheses with very few studies in practice

References

- Bender, R., Friede, T., Koch, A., Kuss, O., Schlattmann, P., Schwarzer, G. & Skipka, G. (2018): Methods for evidence synthesis in the case of very few studies. *Res. Syn. Methods* 9, 382– 392.
- Cornell, J.E., Mulrow, C.D., Localio, R., Stack, C.B., Meibohm, A.R., Guallar, E. & Goodman, S.N. (2014): Random-effects meta-analysis of inconsistent effects: A time for change. *Ann. Intern. Med.* 160, 267-270.
- DerSimonian, R. & Laird, N. (1986): Meta-analysis in clinical trials. Control. Clin. Trials 7, 177-188.
- IQWiG (2022): General Methods, Version 6.1 of 24.01.2022. IQWiG, Cologne, Germany.
- Knapp, G. & Hartung, J. (2003): Improved tests for a random effects meta-regression with a single covariate. *Stat. Med.* 22, 2693-2710.
- Felsch, M., Beckmann, L., Bender, R., Kuss, O., Skipka, G. & Mathes, T. (2022): Performance of several types of beta-binomial models in comparison to standard approaches for metaanalyses with very few studies. *BMC Med. Res. Methodol.* 22, 319.
- Röver, C., Bender, R., Dias, S., Schmid, C.H., Schmidli, H., Sturtz, S., Weber, S. & Friede, T. (2021): On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. *Res. Syn. Methods* 12, 448-474.
- Schulz, A., Schürmann, C., Skipka, G. & Bender, R. (2022): Performing meta-analyses with very few studies. In: Evangelou, E. & Veroniki, A.A., Eds.: *Meta-Research: Methods and Protocols,* pp. 91-102. Humana, New York.
- Veroniki, A.A., Jackson, D., Bender, R., Kuss, O., Langan, D., Higgins, J.P.T., Knapp, G. & Salanti, G. (2019): Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis. *Res. Syn. Methods* **10**, 23-43.