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BACKGROUND
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IQWiG: scientifically independent HTA institution in Germany

 examines the benefits and harms of medical interventions for patients and other affected persons

 provides information on the advantages and disadvantages of different treatments and diagnostic 
procedures

IQWiG‘s work is

 evidence-based: specified in IQWiG’s General Methods  

 independent: no influence on content of reports by payers, service providers, industry organizations or 
politicians

 patient-orientated: assessment of patient-relevant outcomes, involvement of patients and other 
affected persons

 transparent: publication of all documents relevant for reports and of the methods paper; disclosure of 
conflicts of interest by all persons involved in reports (employees, external experts etc.)
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Study selection process – „screening“

55

 Methodological standard:
All selection steps are performed by 2 persons independently of each other. Discrepancies are resolved by 
discussion.

 huge work load / time savings  possible

 (Rule of thumb: 1000 citations = 100 full texts = 10 included)

IQWiG: 

 ca. 200-300 searches (between 100-5000 hits mostly)

 Screening tool
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IQWiG activities: prospective validation study on ML
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Number of 
screenings

Proportion of relevant citations 
after 50%

EPPI N=10 88% [43-100]

Rayyan N= 7 66% [0-100]



What is AI?
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Text Mining

Machine Learning

Deep 
Learning

Artificial 
Intelligence

Natural 
Language 
Processing 
(NLP)

Large Language 
Models (LLM)
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Reproducible ML-Approaches

88

•  Machine Learning Style: Active Learning
• Needs Human Screening Decisions (IN and OUT)
• Machine Learning Algorithm determines ranking order

Ranking 
(Most Screening Tools)

•  Machine Learning Style: Supervised Learning
• Needs a Labelled Development Set (e.g. RCTs versus not RCT) for Training
• Classification according to Machine Learning training result

Pre-trained 
Classifier 

(e.g. RobotSearch, EPPI) 

•  Machine Learning Style: Unsupervised Learning
• No labelling or pre-training necessary
• Classification according to Machine Learning algorithm

Clustering 
(Instant 

Classifier)
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LLM versus ML-Screening
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ML Screening

Reproducible Results

Custom Screening Algorithms

Moderate Algorithm Size

Validated Algorithms Available

Training Data Is Transparent

Large Language Models

No Perfectly Reproducible Results

Language Models Predict the Similarity and 
Co-Occurrence of Words

Very Large Algorithms

No Validated Screening Process Available

Training Data Unknown/ Intransparent
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Foundation Models in Comparison
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• created by OpenAI
• fee-based API

• created by Anthropic
• fee-based API

• created by Google (Alphabet)
• fee-based API

• created by Meta (Facebook)
• open-source

• created by Deepseek (chinese)
• open-source

• created by Mistral AI (french)
• open-source



Differences in LLMs and LLM-based tools

how is it 
generating 
answers?

• zero-shot
• chain-of-thought
• RAG (retrieval-augmented-

generation)
• …

input• text 
• a complete PDF
• multiple PDFs
• images
• videos
• spreadsheets

size of 
the LLM

• runs on a smartphone
• runs on a personal computer
• runs only on special servers (access via API)
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WHAT DOES THE LITERATURE SAY ABOUT ML?
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Background

1313

One year ago…..

 ML algorithms mainly assist screening

 Jiminez 2022 identified 63 tools; for screening 35 (55%) 

 Khalil 2022 identified 26 tools
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The most common and used tools with Machine 
Learning applications
validated tools [according to Khalil 2022]
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• Rayyan

• AbstrackR

• SWIFT-Active Screener

• DistillerAI

• EPPI-Reviewer

• Covidence (new ML feature)

• Cochrane RCT classifier (incorporated in various tools)
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Tercero-Hidalgo 2022 

application of AI tools in 
COVID-19 L.OVE database

28 of 3,000 COVID-19 
reviews

EPPI Reviewer, SWIFT-
Active Screener, Abstrackr, 
Evidence Prime 

1515

Practical applications of ML in screening

Blaizot 2022

AI approaches in published 
systematic reviews

12 systematic reviews, 
using 15 different AI 
methods, 11 methods for 
screening

EPPI Reviewer, Abstrackr, 
Rayyan, K-means clustering 
algorithm, SWIFT-active 
screener, Wordstat/ QDA 
Miner

Summary

No significant 
uptake in 
systematic 
reviews 
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Feng 2022: Systematic review on accuracy of ML screening

Results

71 studies were included in the meta-analysis

The combined recall was 0.928 when achieving the maximized recall by optimizing the AI model.

Subgroup analysis (SVM/ other, number of hits, fraction of included studies) = still no recall above 95%

Conclusion

recall over 0.95 should be prioritized

At the current stage manual literature screening is still indispensable
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WHERE ARE WE GOING? WHERE ARE WE NOW! 
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Example LLM screening study: Tran 2024
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Comparison

retrospective diagnostic study

“Indextest”: ChatGPT (GPT-3.5 Turbo)

Reference standard: Conventional (human) 
consensus title/abstract double screening decision

5 systematic reviews: 2 COVID interventions, 1 
methodological, 1  nutritional, 1 pharmacologic 

22.665 citations (672, 4077, 6334, 6478, 5104)

Prompting

(zero-shot) prompt chaining with instructions to 
provide reasoning for each PICOS element/ Outcome

Balanced interpretation: <= 1 EXCLUDED PICS 
elements

Sensitive interpretation: <= 2 EXCLUDED PICS 
elements



Tran 2024 zero-shot prompt example for PICO element 
population
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Tran 2024: Results
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Balanced 
interpretation

Sensitivity: 81 – 
97%

Specifitiy: 25 – 
80%

Sensitive 
interpretation

Sensitivity: 94 – 
99%

Specifitiy: 2 – 47%

Workload 
Savings

WSS@95%: 54 – 
98% could be 

excluded without 
human screening

Re-test 
reliabilitity

Does ChatGPT 
always give the 
same answer? 

ChatGPT makes 
different errors over 
time, but the overall 
error rate stays the 

same



AI/LLM-based screening approaches

Zero-shot prompting
• single prompt per screening decision
• without examples

Few-shot prompting
• single prompt per screening decision
• one or multiple examples for the correct answer

Prompt chaining
• multiple prompts per screening decision
• goal: breaking down a complex task
• each prompt is solving a simpler task (e.g. appraising one PICO element)

Chain-of-thought prompting (CoT):
• A technique where the LLM is guided to reason through a problem step-by-step in its response, by breaking down complex tasks into simpler parts to improve accuracy  

(Fleurence et al. 2024)
• reasoning can either take place in the background or be spelled out in the answer of the LLM

Majority voting
• considering multiple answers from multiple runs
• can be repeated answers of one LLM
• can be multiple LLMs each returning a single answer
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Zero-shot
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Chain-of-Though (CoT)

Zero-shot Prompt

Answer

Oami 2024



Prompt chaining
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Technical approaches so far…

 Direct access 
 with chat interface

 as a web application

 via smartphone app

 with API access (requires coding 
skills)
 via programming language (e.g. 

Python, R)

 via programming tools (Google Apps, 
Open refine,…)

 Indirect access
 with intermediary service provider

 Search engines

 Screening tools

 Literature software

 Office software 

 …
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Sensitivity performance so far …

Guo 2024: 0.76 
(59,2 - 100%)

Khraisha 2024: 0.42-0.5

Li 2024: 0.38-1

Matsui 2024: 0.81-0.96

Oami 2024: 0.49

Tran 2024: 0.81-0.96 and 
0.95-0.99

Wilkins: 0.71-0.72

Delgado-Chaves 2025: 0.69-0.95
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Specificity performance so far …

Guo 2024: 91% 
(75,6 – 96,6%)

Khraisha 2024: 0.92

Li 2024: 0.47-0.99

Matsui 2024: 0.12-0.99

Oami 2024: 0.99

Tran 2024: 0.25-0.80 and 
0.2-0.46

Wilkins: 0,89

Delgado-Chaves 2025: 0.19-0.97
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Performance of different approaches

Sensitivity Specificity

GOLDSTANDARD
Wong  2006: Medline – 
high sensitivity

99.1% (98.6 to 99.7) 71.0% (70.4 to 71.5)

Cochrane RCT classifier 99% (98%-99%) 63% (48-76)

Tran 2024 balanced 81-97% 20-80%
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CONCLUSION AND DISCUSSION
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Could ML tools assist the screening process? 

3030

 Uptake and implementation of automated tools slow [Khalil 2022] 

 Skepticism remains [O’Connor 2019]

 Still no validated stopping rules available

 New (promising?) approaches: e.g. combined approaches

 Outdated technology?
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Could large language models assist the screening process? 
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 ML vs. LLM: 

 easier to realize

 sensitivity comparable results, but specificity much better

 explorative and retrospective studies – post hoc changes

 no validation study available

 LLMs might already outperforms SRs done by:

 moderate English speakers screening English articles

 non-Expert screeners (PhD Students, novice researchers, general practitioners)
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Implementation or future application of LLMs

3232

 Waiting for software solutions

 Learning how to use Python/ incorporate APIs seems technically not feasible for us

 Future combination of searching/ screening?

 LLMs as second screener or “RCT filter”/NOTing-Out?

 Are we (information specialists) future prompt engineers (e.g. translating PICOS for LLM)?
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PRISMA Essential elements for systematic reviews using 
automation tools in the selection process [Page 2021]

3636

Report how automation tools were integrated within the overall study selection process.

• If an externally derived machine learning classifier was applied (e.g. Cochrane RCT Classifier), […], include a 
reference or URL to the version used. 

If the classifier was used to eliminate records before screening, report the number eliminated in the PRISMA 
flow diagram as ‘Records marked as ineligible by automation tools’.

If an internally derived machine learning classifier was used to assist with the screening process, identify the 
software/classifier and version, describe how it was used (e.g. to remove records or replace a single 
screener) and trained (if relevant), and what internal or external validation was done to understand the risk 
of missed studies or incorrect classifications.

• If machine learning algorithms were used to prioritise screening (whereby unscreened records are 
continually re-ordered based on screening decisions), state the software used and provide details of any 
screening rules applied.
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